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Figure 1. Overview of METASCENES, a large-scale simulatable 3D scene dataset constructed by replacing objects in real-world 3D scans
with realistic and high-quality object assets retrieved or reconstructed from diverse sources.

strate that this process heavily relies on artist-driven designs,

Abstract which demand substantial human effort and present signif-

icant scalability challenges. To scalably produce realistic

Embodied Al (EAI) research requires high-quality, di- and interactive 3D scenes, we first present METASCENES,
verse 3D scenes to effectively support skill acquisition, sim- a large-scale simulatable 3D scene dataset constructed from
to-real transfer, and generalization. Achieving these qual- real-world scans, which includes 15366 objects spanning
ity standards, however, necessitates the precise replication 831 fine-grained categories. Then, we introduce SCAN2SIM,
of real-world object diversity. Existing datasets demon- a robust multi-modal alignment model, which enables the
automated, high-quality replacement of assets, thereby elim-

* indicates equal contribution as first authors. inating the reliance on artist-driven designs for scaling

T indicates equal contribution as secondary authors.
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3D scenes. We further propose two benchmarks to eval-
uate METASCENES: a detailed scene synthesis task fo-
cused on small item layouts for robotic manipulation and
a domain transfer task in vision-and-language navigation
(VLN) to validate cross-domain transfer. Results confirm
METASCENES ’s potential to enhance EAI by supporting
more generalizable agent learning and sim-to-real applica-
tions, introducing new possibilities for EAI research.

1. Introduction

Recent advancements in Embodied AI (EAI) research have
been closely tied to the development of high-quality 3D
scenes [13, 42, 72], which are essential for enabling agents
to learn various skills [18, 25, 29, 79, 87, 91] in simulative
environments. As the demand increases for more diverse
agent skills, improved skill generalization, and robust sim-
to-real (Sim2Real) transfer capabilities, there is a growing
need to enhance the scale [13, 19, 102], realism [12, 40, 80],
interactability [54, 59, 101], and complexity of 3D scenes to
better support a wide range of EAI tasks. However, despite
recognizing these crucial features, meeting these quality
requirements for 3D scenes largely depends on artist-driven
designs, which demand substantial human effort and present
significant scalability challenges. This situation underscores
a central question in 3D scene research within the context
EAIL: How can we scalably produce realistic and interactable
3D scenes that support diverse agent skill learning ?

The major barrier to scaling high-quality artist-designed
3D scenes lies in the diversity of everyday objects and their
intricate layout arrangements, particularly small items [43,
96], which are less studied compared to large furniture [20].
Such features are exceptionally difficult to replicate due to
the limited availability of diverse object assets and the in-
herent challenge of learning these complex arrangements
with either rule-based [13, 71, 102] or generative mod-
els [66, 85, 101], especially given the limited data. As a
result, many efforts adopt a real-to-sim pipeline and aim
to convert real-world 3D scans [2, 9, 104] that naturally
contain such information into virtual replicas by replacing
scanned objects with simulatable counterparts (e.g., CAD
models) [1, 12, 94]. However, this conversion remains chal-
lenging since the limited diversity and quality of available
synthetic assets [5] provide no direct equivalent for real-
world scanned objects, requiring trade-offs between accuracy
in object shape and texture versus attributes like category,
location, and orientation. Such “inaccurate” replacements
without proper candidate selection rationales recorded pro-
vide limited guidance on a general principle for asset replace-
ment in developing automated replica creation pipelines.

Identifying these critical issues in automating the creation
of 3D simulatable scene replicas from real-world scans, we
propose METASCENES, a large-scale simulatable 3D scene
dataset converted from real-world scans. METASCENES

features diverse object types, detailed and realistic layouts
(including small items), and visually accurate appearances
with physical plausibility ensured. Drawing inspiration from
recent advancements in object-level modeling, both from
retrieval-based [14, 15, 99] and generative [37, 86, 111] per-
spectives, we construct a diverse set of potential candidates
for each scanned object in the scene, significantly improving
the quality, diversity and the degree of variation from the
original scanned objects of candidate assets compared to
prior works. More importantly, we guide human annotators
to rank all potential candidates for each object, providing
ground truth for human preference subtle equivalence identi-
fied like geometry, texture, or functionality during optimal
asset replacement. As demonstrated in our experiments,
these annotations not only enable the learning of a power-
ful multi-modal alignment model, SCAN2S1M, for optimal
asset selection, establishing a strong baseline for automated
replica creation, but also offer new insights on augment-
ing these synthetic scenes with object-level randomizations,
which renders new potentials for improving the generaliz-
ability of agents’ learned skills.

To further explore the potential of METASCENES, we
propose two challenging downstream benchmarks to validate
the quality of 3D scenes in METASCENES and report key
findings within the context of EAI research when equipped
with large-scale, realistic simulatable 3D scenes. First, we
introduce a novel task, Micro-Scene Synthesis, which ex-
tends existing scene-synthesis benchmarks [19] with a spe-
cial focus on synthesizing small item layouts, crucial for
robot manipulation learning [31, 47, 48]. Second, we use do-
main transfer in vision-language navigation (VLN) [18, 25]
as a proxy task to validate the quality of METASCENES
scenes by the superior performance of models learned on
METASCENES when conducting cross-domain or Sim2Real
transfer. We also reveal that navigating to small items is a
significant limitation of current VLN models, which could
potentially be improved with METASCENES. In summary,
our contributions can be summarized as follows:

* We introduce METASCENES, a large-scale simulatable
3D scene dataset constructed by replacing objects in real-
world 3D scans with realistic and high-quality object assets
from diverse sources to support EAI research.

* With detailed annotations of candidate object selection and
transformation during replacement, we enable the learning
and evaluation of automated simulatable replica creation
pipelines, providing strong baselines as references.

* We meticulously design two challenging tasks, detailed
scene synthesis and domain transfer VLN, to validate and
leverage the potential of large-scale, realistic simulatable
scenes, uncovering new challenges for the field.



2. Related Work

3D Indoor Scene Datasets The development of 3D scene
datasets has been central to computer vision research due
to its crucial role in understanding and interacting with
the real physical world. Early datasets leveraged RGB-D
cameras [4, 9, 27] to build large collections of scanned in-
door scenes, enabling tasks in 3D semantic and geometrical
reasoning [16, 33, 38, 78, 88, 89]. However, the quality
limitations of these capture devices and the static nature
of the scenes limit their utility for EAI applications. To
address limitations, recent efforts have focused on creat-
ing higher-quality 3D indoor scenes, either by directly de-
signing them in simulative environments [22, 40, 44, 68]
or by using high-resolution capture devices during scan-
ning [2, 80, 104] and providing extra annotations for object
geometry and dynamics [59]. These datasets have signif-
icantly advanced EAI research, particularly in embodied
reasoning [11, 57, 79], navigation [25, 34, 35, 82], and ma-
nipulation [22, 28, 40]. Nonetheless, such high-quality scene
curation remains labor-intensive, prompting efforts to gen-
erate realistic 3D scenes via rule-based or generative mod-
els [13, 66, 71, 85, 101, 102]. Despite their scalability, these
synthetic scenes present a significant Sim2Real gap [40]
due to limited diversity and realism. As scaling becomes
increasingly important in both 3D scene-centric [32, 90] and
EAl research [13, 28, 64], a scalable approach to construct-
ing realistic, simulatable, and diverse 3D scenes is urgently
needed.

3D Asset Modeling Recent years have witnessed sig-
nificant progress in the development of 3D asset model-
ing [14, 46, 53, 67, 75, 83, 84, 111]. The curation of large-
scale object CAD asset libraries, such as Objaverse [14] and
Objaverse-XL [15] effectively addresses the diversity and
quality limitations present in earlier datasets like ABO [8]
and ShapeNet [5], thus paving the way for new research di-
rections in 3D asset generation including text-to-shape [37]
and image-to-shape generation [26, 46, 53,97, 113]. Among
the two directions, image-to-shape generation has received
considerably more attention given the fast development of
2D diffusion models [24, 55, 56, 75] and multi-view ob-
ject representations like NeRF [60, 62] and Gaussian Splat-
ting [39]. These methods leverage the power of pre-trained
2D diffusion models to generate multi-view images of an
object which could be used for learning multi-view represen-
tations [21, 26, 46, 53, 97] or use them as guidance functions
for directly learning 3D multi-view representations [67, 83].
However, adopting such methods for 3D scene reconstruc-
tion remains a challenging task due to the complexity of
modeling individual objects, especially in the presence of
severe occlusions. This challenge has led to the develop-
ment of various models aimed at reconstructing 3D scenes
from scene images [7, 52, 63, 110]. Despite the improving

mesh reconstruction quality, these methods often produce
physically implausible mesh predictions for object instances.
A recent approach, PhyRecon [61], addresses this issue by
introducing physical loss functions in simulators for recon-
struction supervision. Nevertheless, the reconstructed scenes
still lack essential information such as object texture and
accurate geometry, which limits the applicability of these
methods in scaling 3D scenes for EAI tasks.

Real-to-Sim 3D Scene Creation Creating realistic and
diverse simulatable 3D scenes from real-world data is a
long-standing task. Prior work [50, 81] addresses scene
understanding by annotating images with 3D models using
keypoint correspondences, while others [6, 30, 63] use single
RGB images to jointly optimize the size, location, orienta-
tion and appearance for 3D objects in the scene. Despite
aiming for holistic scene understanding, these methods lack
the robustness and generalizability to produce image-aligned
3D objects necessary for EAI research, which demands real-
istic 3D objects in diverse environments. To tackle the chal-
lenges of object modeling in 3D scenes, several large-scale
datasets [20, 40, 58, 94] are proposed with dense annotations
of matched 3D assets. However, they face challenges with
limited asset variety, e.g., Scan2CAD [1] that converts Scan-
Net [9] into 3D CAD models in ShapeNet [5], and struggle
with scalability due to the substantial manual work required
for adjusting, selecting, or even designing 3D assets [40],
especially articulated ones [87]. These challenges highlight
the need for automated scene-creation pipelines, while ex-
isting methods, such as ACDC [10] that uses foundation
models for object matching, struggle in more complex, re-
alistic scenarios and rely heavily on existing asset datasets.
We argue the key to solving this challenge is to alleviate
the dependence on existing assets in a scalable way, where
we propose an automatic pipeline that replaces objects in
real-world scans with assets from object-level reconstruction
or retrieval.

3. METASCENES

In this section, we detail the construction of the
METASCENES dataset, covering data collection, annota-
tion, and post-optimization, and present an overview of our
collection pipeline in Fig. 2. We also outline our design
for SCAN2S1M, a powerful baseline pipeline for automated
replica creation, leveraging ground-truth annotations avail-
able in METASCENES.

3.1. Data Acquisition

In METASCENES, we aim to automatically convert real-
world 3D scans into replicas in simulative environments
by reconstructing the layout of scenes as well as replacing
scanned objects with simulatable 3D assets. Specifically, we
choose the ScanNet [9] dataset as the major data source for



Table 1. Comparison with 3D scene datasets. We provide a comprehensive comparison between METASCENES and existing datasets,

noting that “Recon.”

indicates whether the dataset utilizes reconstructed 3D assets.

Scene Object Asset Physical
Dataset - . L
Source #Rooms  Real CAD Source #Cat Recon. #Objects Candidates Optimization
Scan2CAD [1] ScanNet [9] 706 v ShapeNet [5] 35 X 14225 X X
OpenRooms [49] ScanNet [9] 706 v ShapeNet [5] 44 X 16014 X X
R3DS [94] Matterport3D [4] 370 v ShapeNet [5], Wayfair [76] 110 X 19050 X X
CAD-Estate [58] YouTube 19512 v ShapeNet [5] 49 X 100882 X X
RoboTHOR [12] Artist design 89 X IKEA 44 X 731 X X
BVS [22] BEHAVIOR-1K [45] 1000 X BEHAVIOR-1K [45] 1937 X 6685 X v
ReplicaCAD [82] Replica [80] 90 v Artist design 39 X 2293 X v
HSSD-200 [40] Floorplanner 211 X Floorplanner 466 X 18656 X X
3D-FRONT [19] Artist design 18968 X 3D-FUTURE [19] 49 X 13151 X X
METASCENES ScanNet [9] 706 v Objaverse [14] 831 v 15366 v v
Annotation Optimization
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Figure 2. The construction of METASCENES. METASCENES is composed of three sequential steps: (i) Collection, where we gather
diverse 3D asset candidates for each real-world object in the scan; (ii) Annotation, where annotators rank and select the best-matching 3D
asset for each object based on visual similarity and geometric fit; and (iii) Optimization, where selected assets undergo post-processing and
global optimization to ensure full interactivity and physical plausibility in simulation environments.

real-world scans and construct the METASCENES dataset
with the following main steps:

Room Layout Estimation To obtain simulatable replicas,
we first reconstruct the floor plan of each real-world scene us-
ing the 3D scene point clouds. Specifically, we employ two
types of methods: (i) an end-to-end method following [106],
which uses a pre-trained layout transformer to predict the
floor plan, walls, and ceilings from the 3D point cloud; and
(ii) a heuristic-based method, which uses the maximum area
covering all object contours as the room’s floor plan. During
post-optimization, the second method serves as a backup so-
lution in case of incomplete room point clouds or inaccurate
predictions from the first method.

Object Asset Curation For each scanned object in the
scene, we aim to find diverse and high-quality simulatable

3D assets that can serve candidates for replacements, closely
matching the original objects. To achieve this, we use the
capability of vision-language foundation models [41, 103]
to generate rich multi-modal descriptions for each scanned
object. First, we leverage 3D point clouds and depth maps to
select the 2D view with the clearest visibility and minimal
occlusion for each object. Then, we use SAM [41] to gener-
ate 2D masks of the objects, feeding these masked images
into GPT-4V [103] to produce detailed captions describing
object texture, color, physical properties, and more. With
this descriptive information, we apply recent advancements
in object-level modeling to gather asset candidates through
three main types of methods: (i) Text-fo-3D generation meth-
ods where we use the detailed text prompts of the object to
generate object meshes via models like Shape-E [37]; (ii)
image-to-3D generation methods where we use the 2D ob-



ject image as the input condition to generate object meshes
using methods like TripoSR [86], InstantMesh [95], and
Michelangelo [113]; and (iii) text-to-3D retrieval methods
where we retrieve object assets from online large-scale data
sources like Objaverse with methods like Uni3D [114] and
ULIP [98]. To further refine the quality and realism of gener-
ated meshes, we apply texture optimization methods, such as
Paint3D [107], to enhance the color fidelity and surface tex-
ture of generated meshes. We provide more details for data
collection and a full list of methods used for asset curation
in the supplementary.

3.2. Data Annotation and Processing

Data Annotation With 3D asset candidates generated, we
guide human annotators to rank these candidates based on
their suitability as replacements for the original scanned ob-
jects. Ranking criteria focus on geometric similarity and
visual appearance (e.g., material and texture), with anno-
tators referencing point clouds and multi-view images of
the scanned objects. Leveraging the ranking information,
we perform scene- and object-level augmentation by replac-
ing each highest-ranked candidate with one of the top five
alternatives, as shown in Fig. 1. Additionally, we instruct an-
notators to place the best replacement asset into the 3D scene,
adjusting orientation and scale as needed for the optimal fit.
A visualization of our annotation pipeline is shown in Fig. 2,
with further details on the annotation process provided in the
supplementary.

Physics-based Optimization To further ensure the physi-
cal plausibility of object placements, we perform a physics-
based optimization by first constructing a 3D hierarchical
scene-graph from the scene point clouds following [32].
These scene-graphs encode spatial relations (e.g., support,
embedding, containment) as constraints. To assess the qual-
ity of the scene-graphs, we manually verified spatial rela-
tions in 10 randomly sampled scenes and observed 96.3%
accuracy. Given the complexity of optimizing layouts with
these constraints using gradient-based methods, we employ
Markov-Chain Monte-Carlo (MCMC) sampling guided by
both the scene-graph and also the physical violations like
collisions to adjust object positions. Finally, we import
the optimized scenes into Blender, where we add physical
properties like material types and masses for each object
prompted from foundation models, to enhance the physi-
cal realism of the reconstructed scene. Pseudo code for the
MCMC process and additional details are provided in the
supplementary.

3.3. Dataset Statistics and Quality analysis

We provide a detailed comparison between METASCENES
and existing datasets in Tab. 1. METASCENES includes
15366 object instances derived from 7328 unique 3D assets.

A photo of a
wooden stool.

Figure 3. Overview of our optimal asset retrieval model. We
provide a multi-modal alignment model to retrieve the best asset
from candidates.

For each object, we provide a minimum of six asset candi-
dates, resulting in a total of 98423 unique 3D assets in the
dataset. These objects covering 831 fine-grained object cate-
gories in 706 replicated scenes spanning various room types.
It also includes rich semantic information for each object,
entailing their physical properties such as mass, material,
and bounciness, along with 21 types of spatial relationships
and detailed textual descriptions. We believe these compre-
hensive annotations can significantly enhance the value of
METASCENES for EAI tasks.

We further verify the quality of the replicated scenes with
quantitative analysis based on Chamfer Distance (CD) met-
rics, we can show we significantly outperforms previous
methods like Scan2Cad in not only diversity but also accu-
racy. Specifically, the replicated objects in our scenes more
closely match the originals, with an average similarity score
of 0.25 in METAS CENES compared to 0.35 in Scan2CAD.

3.4. The ScaN2S1Mm Pipeline

In this section, we detail the proposed SCAN2SIM pipeline
for automated simulatable replica creation for real-world
3D scans. As described in Sec. 1, the major challenges
of designing such a pipeline lie in: (i) the selection of the
optimal asset for replacing the target scanned object, and (ii)
aligning the location, size, and orientation of the selected
asset to the scanned object. We describe our solution to these
challenges as follows:

Optimal Asset Retrieval Based on the ground truth opti-
mal asset selection annotation in METASCENES, we learn
a multi-modal alignment model to retrieve the best asset
candidate from a set of candidate assets. For each ob-
ject, 4 in the scene, we construct quadruples {I;, T}, P;, y;),
where I; is the object image, T is the text description,
P, = {P!,--- P} is the set of L potential candidate
point clouds, and y; is a one-hot vector indicating the best
match. We then design a multi-modal contrastive model to
learn optimal asset retrieval. First, we extract image and text
features, h! and h7, with frozen image and text encoders
from [99]. Next, we adopt a learnable 3D encoder Ep to ex-
tract point cloud feature hf . = Ep(PF) for each candidate



P} € P,. We compute the matching score between each

candidate and the corresponding image or text with:
@ = [(hPL Ry (RE RDY], ref{I, T (D)

Additionally, we compute a matching score g/ directly from
the point cloud by passing {h;}/-, through a learnable
MLP, to prevent the case where no image or text is available.
We supervise model learning with the following loss and
provide an illustrative visualization of our model in Fig. 3:

£match = _Zyi 'IOgU (qu + qiT + qZP) : (2)
%

To better align point cloud features with image or text
features across different scenes and object instances, we add
an additional supervisory signal by creating a new set of
candidates P} consisting of the original best candidate and
candidates randomly sampled from different scenes. We
follow Eq. (1) to calculate a similar matching score g} " and

ql ' for the auxiliary loss:
/ /!
Lax = — Z y; IOg a(q'il + qz'T ) 3)

The final learning objective is £ = Liaeh + Laux-

Object Pose Alignment We adopt a heuristic-based asset
placement pipeline for aligning the best-retrieved asset into
the scene. First, we translate the center of the best retrieved
asset Cygset to the center of the real-world scanned object
Creal- Next, we scale the asset so the longest side of the asset
bounding box &g matches that of the scanned object Treq).
Finally, we rotate the asset around the up-axis in 30-degree
intervals, finding the minimal rotation angle that best aligns
Tasset AN Treq1.

4. Experiments
4.1. Automated Replica Creation

Settings We first evaluate the automated creation of repli-
cas from real-world 3D scans in the following two settings:

(i) Optimal Asset Selection, where the target is to se-
lect the best asset from a candidate pool given the target
image, text description and scanned point cloud. We com-
pare SCAN2SIM against state-of-the-art multimodal align-
ment methods, which match the modality from the input
to the modality from the candidates. For example, I+ T« I
indicates matching with the Image and Text of the input
with the candidate assets using rendered Images. We re-
port the Top-1 and Top-5 accuracy, along with similarity
metrics, i.e., Chamfer Distance (CD), Enhanced Chamfer
Distance (ECD), Intersection over Union (IoU) of 3D bound-
ing box and Color Histograms. Evaluation is conducted on
the METASCENES test set, covering 2497 objects where
each one contains 10 asset candidates to choose from.

(ii) Object Pose Alignment, where we evaluate the per-
formance of our model SCAN2SIM and ACDC [10] in re-
covering the correct scale and rotation of the asset given
the original image and scan. ACDC uses Dino-V2 [65] to
select the best-matched orientation and then apply a render-
and-compare method to determine the asset’s scale. For
evaluation, we report the pose alignment difference mea-
sured in CD, IoU, Size Error (m?), and Scale Error (m). We
evaluate on 30 scenes from METASCENES and 10 scenes in
ScanNet++[104]. The ground truth for ScanNet++ scenes is
annotated following the same procedure in Sec. 3.2.

For more experiment details, refer to supplementary.

Results & analyses. We present the quantitative results of
asset selection in Tab. 2 and pose alignment in Tab. 3, with
the following key observations:

* The results in Tab. 2 indicate that our SCAN2SIM pipeline,
which aligns the text and image inputs with candidate 3D
point clouds (I+T<«>P), achieves the highest performance
across all metrics. This indicates that training with the
ranking annotations of our dataset significantly improves
the performance of optimal asset selection, as compared
with ULIP2, which is trained on large-scale Objaverse [ 14]
with the same modality alignment, fails to fulfill this task
whereas our model achieves a Top-1 accuracy of 28.4%.

* The large-scale models, e.g., CLIP and GPT-4V, realize
the second-best performance, indicating their strong gen-
eralizability on the text and image alignment. In contrast,
methods relying on single-modality alignment underper-
form in both accuracy and similarity. For example, [<1
methods struggle due to the challenges of capturing de-
tailed 3D geometric structures with a single 2D image,
while P<—~P methods with powerful encoders PointBert
and PointNet++, are limited by discrepancies in distribu-
tion between real-scanned point clouds and the 3D asset
sampling, leading to suboptimal results.

* Tab. 3 reveals that accurately estimating the transformation
of assets using 2D images alone is challenging, as real-
world objects are often occluded. These occlusions can
lead to incorrect orientation estimations from render-and-
compare in ACDC. SCAN2SIM mitigates this issue by
optimizing poses based on the scanned object point clouds,
providing more stable and robust 3D spatial information
for object geometry and orientation. Fig. 4 shows that our
model offers more reliable asset selection among baselines,
enabling automatic digital replica creation in ScanNet++.

4.2. Micro-Scene Synthesis

Overview Current research [51, 66, 85, 101, 108] in in-
door scene synthesis primarily focuses on generating layouts
for large furniture, such as table, wardrobe, and sofa. How-
ever, due to the lack of training data, none of them talks about
the arrangement of smaller objects, which we believe is es-
sential for enhancing the realism of the scene and its practical



Table 2. Quantitative evaluation on optimal asset selection. We used different colors to highlight the top three methods for each metric.

Modality Accuracy Similarity
Method :
Input Cand. Top-1(%)? Top-5(%)1 CD| ECD| IoUt Color Hist.]
SSIM [92] I I 6.3 444 0.24 0.31 0.40 48.10
LPIPS [112] 5.9 45.5 0.24 0.30 0.40 48.01
Uni3D [114] I p 11.1 51.8 0.23 0.29 0.45 39.22
ULIP-2 [99] 12.0 59.8 0.22 0.28 0.44 42.36
ICP [3] 9.2 52.5 0.24 0.30 0.40 41.34
Point-BERT [105] P P 9.5 51.6 0.22 0.28 0.47 43.48
PointNet++ [69] 11.8 52.5 0.22 0.28 0.49 37.50
Uni3D [114] T p 10.2 51.9 0.26 0.32 0.43 37.14
ULIP-2 [99] 14.3 60.3 0.19 0.25 0.52 32.34
CLIP [70] T I 14.9 66.6 0.21 0.27 0.51 28.02
GPT-4V [103] 16.5 59.9 0.19 0.26 0.52 32.66
ACDC [10] I+T I 12.3 36.6 0.21 0.27 0.47 37.92
ULIP-2 [99] 4T p 13.1 57.7 020 0.26 0.49 37.49
SCAN2SIM 28.4 76.0 0.17 0.23 0.60 24.65
Input Ours SSIM  GPT-4V  Uni3d Point-Bert ACDC  ULIP-2
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Figure 4. Automated replica creation. We visualize the optimal asset selection results in METASCENES (left), and a digital replica
automatically created via SCAN2SIM on ScanNet++, before (top) and after physics-based optimization (bottom).

Table 3. Quantitative evaluation on object pose alignment.
Note that "Size Err." represents the size discrepancy between each
aligned object and its real-world counterpart, while "Scale Err."
refers to the scene-level size discrepancy.

Method Size Err.] IoUt? CD| Scale Err.|

ACDC [10] 0.34 029 0.21 0.17
SCAN2SIM 0.26 035 0.20 0.17

ACDC [10] 0.55 024 0.26 0.13
SCAN2SIM 0.36 040 0.21 0.13

Dataset

METASCENES

ScanNet++ [104]

applicability. Leveraging the abundant small objects and re-
alistic arrangements in METASCENES, we propose a new
task, Micro-Scene Synthesis: generating plausible layouts
of small objects atop a given piece of large furniture.

Settings We follow the setting of scene synthesis and
benchmark this new task by adopting three popular meth-
ods: ATISS [66], DiffuScene [85], and PhyScene [101]. For
metrics, we follow the previous works and report Fréchet In-

ception Distance [23] (FID), Scene Classification Accuracy
(SCA), and Category KL divergence (CKL). We also adopt
the collision rate of both objects Colgp; and scenes Colgeene,
and use Ry, to evaluate the rate of small objects outside the
plane of large furniture [101].

Results From Tab. 4, ATISS has the best SCA and Ry
score, which means the generated layouts are more accu-
rate and similar to the dataset. On the contrary, DiffuScene
and PhyScene show greater diversity, with better scores on
CKL. Meanwhile, PhyScene shows effectiveness in reducing
object collision by introducing additional physics guidance,
producing lower Colypj and Colgeene. We visualize the gener-
ated examples from PhyScene in Fig. 5(a), which shows real-
istic and diverse object-level generation with the given large
furniture. Finally, we combine large-object scene synthesis
with Micro-Scene Synthesis to achieve room-level genera-



(a) Object-Level

(b) Room-Level

Figure 5. Micro-Scene Synthesis results. We visualize the generated results in a) Object-Level with the generated small objects given the
large furniture. b) Room-Level by first generating the room layout, and then generating small objects atop the large objects.

Table 4. Benchmark results on Micro-Scene Synthesis. These
three methods show different advantages on different metrics.

Table 5. Cross-domain embodied navigation. METASCENES
improves generalization in unseen real scenes.

Method FID| SCA| CKL| Colojl Colienel Roul

ATISS [66] 3325 0.631 0.121 0.645 0.68 0.015
DiffuScene [85] 30.63 0.772  0.037  0.657 0.68 0.078
PhyScene [101]  30.63 0.767  0.039  0.395 0.45 0.074

tion. Fig. 5(b) shows the synthesized whole room from
PhyScene by first generating the large-object layout with
training on 3D-Front [19] and generating the small-object
layout for each large object with training on METASCENES.

4.3. Embodied Navigation in 3D scenes

Overview Previous work [18, 73, 74, 93, 100] shows that
imitating shortest path trajectories in simulation enables em-
bodied agents to develop effective navigation skills. How-
ever, current datasets [13] are often procedurally generated
scenes rather than real-world environments, limiting their
applicability for real-world settings. In contrast, our dataset,
METASCENES, offers more realistic environments that bet-
ter capture the complexities of real-world layouts and object
variations, and can be seamlessly incorporated into simula-
tion platforms. To demonstrate the validity of our dataset, we
train agents using different data sources and evaluate their
generalizability within the AI Habitat [77] environment.

Settings We have three settings for imitation navigation
training: 1) ProcTHOR [13], a procedurally generated scene
dataset 2) METASCENES, and 3) a combination of both. For
evaluation, we split METASCENES into In-domain Scenes,
which is used during training, and Heldout Scenes, which
remain unseen. We further test on 10 scenes from ScanNet++
as a completely Held-out Domain. We choose the state-
of-the-art navigation model SPOC [18] as the shared agent
baseline. We report Success Rate (SR), Episode Length (EL),
Curvature, Success Weighted by Episode Length (SEL), and
Success Weighted by Path Length (SPL) to evaluate the
agent’s capabilities on exploration and planning efficiency.

Results Tab. 5 shows that the model trained solely on
METASCENES performs better in the Heldout Scenes while

Benchmark Data Source SR(%)? EL|  Curvature] SELT SPL?
Indomain  POCTHOR[13] 5243 25.34 0.38 50.00 43.81
oot METASCENES ~ 58.00 2340 0.17 55.00 51.39
Both 59.07 2278 0.21 5594 5228

Heldout  POSTHOR[13] 5121 25.73 0.33 4843 4382
se n"‘: METASCENES ~ 52.64  25.57 0.14 49.62 4555
cenes Both 5136 25.58 0.22 4833 4478
Heldout  PTOCTHOR[I3] 4533 2856 0.38 4290 37.58
Domame METASCENES  50.67 2656 0.25 4778 4433
Both 46.67 2695 0.27 4343 4151

the model trained on both datasets demonstrates the highest
SR in In-domain Scenes. This indicates that ProcPHOR is
more likely to cause overfitting while METASCENES al-
lows for improved generalization to unseen real scenes. This
is further validated by the Heldout Domains experiments,
where training on METASCENES results in a 5.34% SR in-
crease over the ProcTHOR. The EL, SPL, and SEL further
show that our dataset leads to paths more closely aligned
with the ideal shortest trajectory, indicating more efficient
navigation with superior smoothness from the curvature met-
ric. We further evaluate the sim2real capability of our agents
in real-world environments, with more qualitative results in
supplementary.

5. Conclusion

In this work, we presented METASCENES, a large-scale sim-
ulatable 3D scene dataset that advances EAI by providing
high-quality, interactable, and realistic 3D scenes. Using de-
tailed annotations, we developed SCAN2S1M, a multi-modal
alignment model that supports the creation and evaluation
of automated real-to-sim replication pipelines. Additionally,
we introduced two benchmarks: Micro-Scene Synthesis and
cross-domain VLN, which validate METASCENES’s effec-
tiveness and value in addressing key challenges within EAL
METASCENES represents a step forward in scalable and
realistic scene generation, laying the groundwork for robust
scene understanding and more generalized agent skills.
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METASCENES: Towards Automated Replica Creation for Real-world 3D Scans

Supplementary Material

A. The METASCENES Dataset
A.1. Data Acquisition details

Small objects capturing METASCENES includes numer-
ous small objects, a category that existing datasets [1, 94]
often fail to capture effectively. We follow a structured ap-
proach to identify and capture small objects that may be
difficult to locate within a scene. First, we manually curate
a list of support objects—such as tables and shelves—that
are likely to either support or contain small objects. Next,
we utilize SAM [41] to generate 2D masks for these support
objects. These masked images are then input into GPT-
4V [103] to prompt potential small objects that may be po-
sitioned on or within these support objects. Finally, we
employ YOLO-v8 [36] to detect and segment these small
objects within the scene. The prompt used to guide GPT-4V
in capturing small objects is presented in Tab. Al.

Object captions generation To generate detailed object
captions that describe object attributes, we employ GPT-
4V [103] for description prompting. The object captions are
categorized into two types: Object appearance, which detail
visual characteristics such as color, shape, and texture. Phys-
ical attribute, which cover attributes like physics properties,
mass, friction and bounciness. These two types of captions
comprehensive coverage of object features, enabling a nu-
anced understanding of each object’s role within the scene.
We show some examples in Tab. A2. The prompt used to
guide GPT-4V in generating physical attribute captions is
presented in Tab. Al.

Asset candidates curation To replace each object with
simulatable 3D assets, our goal is to identify diverse, high-
quality candidates that closely resemble the original objects.
For each scanned object, we generate 10 asset candidates us-
ing a combination of methods: text-to-3D generation, image-
to-3D generation, and text-to-3D retrieval. The models for
generating these 10 candidates are detailed in Fig. Al. These
candidates ensure a balance of variety and fidelity, offering
multiple options for replacement that enhance realism and
physical plausibility. We show additional qualitative ex-
amples of asset candidates in our METASCENES dataset
in Fig. AS.

For texture optimization, we refine the UV unwrapping
process to improve the handling of complex object shapes.
Instead of using the open-source UV-Atlas tool, as adopted
in Paint3D [107]. We employ Blender’s Smart UV unwrap-
ping to preprocess images. This approach generates a UV
map with fewer fragments and greater stability, facilitating
smoother and more effective texture optimization. This re-

Method Input Asset Candidates
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Figure A1. Models for generate asset candidates. For each object,
we generate 10 asset candidates (labeled as 1-10 in the figure) by

leveraging a combination of approaches: text-to-3D generation,
image-to-3D generation, and text-to-3D retrieval.

Text-to-3d A wood smooth stool
Retrieval in light brown color

finement is particularly beneficial for assets with intricate
geometries, ensuring more consistent and visually appealing
texture mapping.

A.2. Data Annotation and processing details

Human annotation We outline a typical annotation work-
flow that begins with a real-world scene represented as a
point cloud. Annotators freely pan the camera to explore the
entire scene, with an overlaid interface that remains synchro-
nized with their view. The annotation process involves the
following three sequential steps:
(i) Selection: Annotators select an object from the list
of unannotated objects. Once an object is selected,
a panel displays a list of candidate 3D assets corre-
sponding to the object. Annotators are instructed to
evaluate and identify the best-matching 3D asset based
on visual and geometric similarity.

(ii)) Transformation: The selected 3D asset is automat-
ically integrated into the scene with a preprocessed
scale and orientation. Annotators can then refine the
placement by adjusting the asset’s position, height,
scale, and rotation to ensure accurate alignment with
the point cloud and image.

(iii) Ranking: Annotators rank the remaining 9 candidate
assets, identifying the top 2-5 objects that also closely
match the real-world object. As shown in Fig. A2.

We recruited annotators to ensure the quality and accuracy



Table Al. Prompts used in METASCENES.

Purpose Prompt

Small object capturing

You will be provided with an image containing a label. Your task is to carefully analyze the image and list

the items present on the surface of the label.

Please ensure that you only include items that are on its surface and not those nearby. If you think there is
nothing on this label, please return an empty list.

Each item should be described in a concise and accurate manner and returned in JSON format.

Each item’s JSON object should include the following fields:

- item: The name of the object
- color: The color of the object
Example Output:

If there is a black mouse pad and a red cup on the table, your output should be:

[{ ‘item’:
‘color’:

‘mouse pad’,
‘red’” }]

‘color’:

‘black’” }, { ‘item’: ‘cup’,

Image: A real-world image containing a table.

Label: Table

Physical attribute
JSON format, including:

Given the following object label and its size, please output the physics attributes of the object in strict

Physics Properties: Classify the object into one of the following categories:

Rigid Body (e.g., Table, Chair, Book, Ball, Cup, Box, Door)

Cloth (e.g., T-shirt, Curtain, Tablecloth, Flag, Bed sheet, Towel, Pants)

Soft Body (e.g., Jelly, Soft toy, Rubber ball, Cushion, Slime, Foam, Balloon)

Mass: Estimate the mass of the object based on its label and bbox size. The mass value should be a float

number.

- For small objects (e.g., ball, book), the mass should be between 0.1 to 5.0.
- For medium objects (e.g., table, chair), the mass should be between 5.0 to 50.0.
- For large objects (e.g., building, vehicle), the mass should be above 50.0, depending on the object’s real

properties.

Friction: Assign a friction value between 0 and 1 based on the object type. The friction value should be a

float number:

- 0.0: No friction (completely smooth, slides freely).

- 0.1-0.3: Low friction (slight resistance, still easy to slide).

- 0.4 - 0.6: Medium friction (noticeable resistance, sliding becomes difficult).

- 0.7 - 1.0: High friction (almost no sliding, quickly stops after collision).

- > 1.0: Super high friction (very high resistance, may "stick" together, preventing sliding).
Bounciness: Assign an integer value of O or 1 to indicate whether the object bounces or not:

- 0: Does not bounce.
- 1: Bounces.

Output Format: Please format your output strictly as JSON, ensuring that mass and friction are float values,

and bounciness is an integer:
{ ‘physics_attributes’:
‘mass’ :
Object Label: Chair
Object Size: [1.2, 1.0, 0.6]

‘category’ : {Rigid Body | Cloth | Soft Body},
[float], ‘friction’:

[float], ‘bounciness’:[int]}

of the 3D scene reconstruction process. Annotators were
instructed to follow these detailed guidelines: (i) Object
Matching. Annotators were required to select 3D assets that
closely align with the observed categories, shapes, and sizes
of the objects in the scene. Accurate matching between
the original objects and their replica creations is critical for
maintaining realism. (ii) Object Consistency. For objects
with uniform appearance across the scene, the same 3D asset
must be consistently selected for replacement. (iii) Spatial

Accuracy. Each object must be placed and oriented to match
its position in the 3D point cloud and accompanying image
as closely as possible. Annotators were instructed to avoid
misplacements, such as collisions between objects or floating
artifacts, to the greatest extent feasible.

To ensure the accuracy and reliability of the annotation
results, we implemented a quality control process as follows:
For each batch of annotated data, 10% of the samples are
randomly selected for accuracy verification. If more than



Table A2. Examples of object captions in METASCENES. Note
that ‘Friction’ assign a friction value between 0 and 1 based on the
object type and ‘Bounciness’ assign an integer value of 1 or O to
indicate whether the object bounces or not.

Image Object Appearance  Physical Attributes

* Rigid body
Mass: 20 kg
Friction: 0.5
Bounciness: 0

A fabric and plastic
soft office chair in red
color.

Cloth

Mass: 10 kg
Friction: 0.3
Bounciness: 0

A fabric soft blanket
in white color.

Soft Body
Mass: 1 kg
Friction: 0.3
Bounciness: 0

A fabric smooth pil-
low in multi-colored.

Soft Body

A fabric soft stuffed Mass: 0.5 kg
animal in brown Friction: 0.3

color. ¢ Bounciness: 1
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Figure A2. Annotation interface of object ranking. Once the best-
match asset is selected, annotators are asked to rank the remaining
9 candidate assets.

98% of the inspected samples pass the reviewer’s validation,
the batch is deemed acceptable. Otherwise, the annotators
are required to re-label the entire batch to address potential
errors and meet the quality standards.

Physics-based Optimization We use Markov Chain
Monte Carlo (MCMC) to traverse the non-differentiable
solution space, optimizing the horizontal and vertical place-
ment of objects to prevent issues like collisions or floating
objects. See Algorithm 1 for the pseudo code. To quantify
collisions for m objects in scene S, we compute the collision
loss as follows:

L=> > IoU(BBox(o;), BBox(0;)), (A1)
i=1j=i+1

where BBox(-) represents the 3D bounding box of object,
and IoU denotes the Intersection over Union metric. The loss
L aggregates the pairwise IoU values for all unique object
pairs. This formulation allows the optimization process to
iteratively minimize L, effectively reducing collisions and
ensuring proper spatial arrangements in the scene.

Algorithm 1: MCMC Optimization Algorithm
Input

: Scene S with m objects at their initial

positions, where S = {01,09,...,0m}
Output : Scene S with m objects at their optimized
positions.

1: n < 0 {Initialize MCMC step counter }

2: T « {ty,to,t3,t4} {Set of possible movements along
parameter axes}

3: Lg <« CalculateCollisionLoss(S) {Initial collision loss}

4: Ly < Lo {Track the minimum collision loss}

5: while L,, > 0 and n < MaxStep do

6: fori=1 to mdo

7: Randomly select a movement ¢ € T" and apply it to
object o;

8: if 0; remains within scene boundaries then

9: Compute the new position for o;

10: L} « CalculateCollisionLoss(S) {Collision

loss after moving o; }

11: if L} < Ly, then

12: Update the position of o;

13: Luin < L¢, {Update the minimum loss}

14: else

15: Revert the position of o;

16: end if

17: end if

18:  end for
19:  n <« n+ 1 {Increment the MCMC step counter }
20: end while

A.3. METASCENES statistics

We present histograms showing the distribution of ob-
ject counts and object categories per scene in Fig. A6a



Figure A3. Scene examples. We compare the scenes in METASCENES (left) with its original 3D point cloud (right). Note that layouts are

set to be invisible.

and Fig. A6b. Additionally, we include a box plot illus-
trating the distribution of physical sizes (measured in vol-
ume, m?>) for the top 50 most frequent object categories
in Fig. A7. Fig. A4 shows a word cloud visualization of
categories in METASCENES, with the text font size repre-
senting the total count of unique object instances in each
category. We see that our dataset contains a diverse set of
object categories. Qualitative examples of scenes from our
METASCENES dataset can be found in Fig. A3. For the effi-
ciency of dataset creation, the end-to-end preprocessing of a
scene with 39 preprocessed object candidates takes approxi-
mately 12 minutes. The time for object candidate creation
depends on the reconstruction model used. Each annotator
takes about 2 minutes to annotate one object.

B. Experiment Details
B.1. Automated Replica Creation

Model Training We train our optimal asset retrieval model
using a training set of 600 scenes, which includes a total
of 13125 objects. For point cloud encoding, we finetune
the PointBERT pretrained on [99], and for image and text
encoding, we utilized OpenCLIP. During training, we ap-
plied standard data augmentation techniques to the 3D point
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Figure A4. Word cloud of object categories in METASCENES.
Font sizes indicate unique instance count per category.

clouds, such as random point dropping, scaling, shifting, and
rotational perturbations, to enhance model robustness.

Baselines We detail the setup for the comparative models,
through two key components: Optimal Asset Selection and
Object Pose Alignment.

(i) Optimal Asset Selection. We evaluate METASCENES
against state-of-the-art multimodal alignment methods, as
summarized in Tab. 2 in the main paper. For the Uni3D [114]
baseline, we use OpenCLIP with the model configuration



Input TripoSR InstMesh

!

Shape-E

Awooden smooth
top table in white
and black color

.

A metal texture
lamp in beige color

A mental wood
chalr in brown color

A plastic mental
monitor in black
and _silver color

S &

A ceramic smooth
toilet in white color

R
i
-
sy

Shape-E* Michelangelo* Text-to-3D
. B

r
=

—

o i 5

retrieval from Objaverse (from top1l to top5)

Ve
: i

Figure AS. Overview of our asset candidates. Note that “*” indicates texture optimization.

Distribution of Object Counts Per Scene

Distribution of Object Categories Per Scene

Number of Scenes

40

60
Number of Objects

80

(a) Distribution of Object Counts Per Scene.

100

Number of Scenes

10

20
Number of Objects Categories

30 40 50 70

(b) Distribution of Object Categories Per Scene.

Figure A6. Object statistics in METASCENES.
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Figure A8. Diverse results of the micro-scene synthesis. The model is capable of generating varied layouts for the same large furniture.

“EVAO02-E-14-plus” as the image and text encoder. This
advanced Transformer-based model is pre-trained to re-
construct robust language-aligned visual features through
masked image modeling, enabling strong cross-modal align-
ment capabilities. The Point-BERT [105] is pre-trained
on the ModelNet40 dataset, while PointNet++ [69] is pre-
trained on the SceneVerse [32] dataset. For the ACDC [10]
framework, we employ CLIP and DINO-v2 [65] to identify
the best-matching assets.

(ii) Object Pose Alignment. In the ACDC framework, we
first utilize DINO-v2 to determine the optimal orientation
of the asset. Once the best orientation is selected, we apply
a render-and-compare method to adjust the asset’s scale.
Specifically, after identifying the optimal orientation, we
scale the asset across a range of factors from 0.5 to 1.5 and
render both the asset and the corresponding real-world object
into the 2D image. The asset’s scale is then determined by
comparing the 2D bounding box sizes of the rendered asset
and the real-world object in the 2D image, with the best-
matching scale corresponding to the minimal discrepancy
between the two boxes.

Metrics We detail the metrics used in our experiment as
follows: Chamfer Distance (CD) measures the average dis-
tance between point clouds. Enhanced Chamfer Distance
(ECD) extends CD by incorporating curvature and geometric
features to better capture fine details. Bounding Box Inter-
section over Union (Bbox IoU) calculates the intersection
over union for the 3D bounding boxes of the assets. Color
Histograms (Color Hist) compute the Kullback-Leibler di-
vergence between the color distributions of the selected and
ground truth assets.

B.2. Micro-Scene Synthesis

Data Processing We preprocess METASCENES by divid-
ing the rooms into micro-scenes. Each micro-scene contains

one large object and several corresponding smaller objects
placed on it. We retain the large object categories similar
to those in 3D-FRONT, such as “sofa,” “cabinet,” and “ta-
ble”. For a small portion of objects with unknown categories,
we classify them as “object”. Additionally, we merge over
400 open-vocabulary object names into 60 categories: 25
for large objects and 43 for small objects, with 8 categories
shared between them, as shown in Tab. A3. After processing,
the micro-scene dataset consists of 1,012 micro-scenes and
773 object assets. The quantity distribution of each cate-
gory in the preprocessed micro-scene dataset is illustrated
in Fig. A10.

Model Setting In our setup, micro-scenes do not require
the shape of the floor plan. Therefore, for all three mod-
els, i.e., ATISS [66], DiffuScene [85], and PhyScene [101],
we exclude the floor plan input and layout encoder. For
DiffuScene and PhyScene, we set the maximum number of
objects to 24, with the layout of the large furniture provided
as the first object vector. The models generate the remaining
23 vectors, including the empty vectors. For ATISS, the
model uses the layout of the large furniture as the first object
and then sequentially predicts the layouts of the smaller ob-
jects. From the 1,012 processed scenes, we randomly select
803 for training and reserve the remaining 208 for testing.

Diverse Generation Results We present results with var-
ious large furniture pieces in Fig. 5. In addition, we show
diverse results for the same large furniture, specifically se-
lecting a table. As shown in Fig. A8, the model is capable of
generating varied layouts for the same large furniture.

Room Type - Object Category Relationship We train
DiffuScene with a text embedding module, where the prompt
includes both the large object’s category and the room type.
For example: “A counter in the kitchen”. The text encoder
from CLIP [70] is used to embed the prompt. During infer-



Table A3. List of 60 categories in micro-scene synthesis. The category for large furniture is marked in green and the category for small
object is marked with underline. There are 8 categories shared between both groups.

alarm_clock bag basket bathtub bed bin
book bottle box bucket cabinet can
chair clothing coffee_table  computer  cooking_machine counter

decoration desk dining_table earphone electronic_devices end_table
food instrument kettle keyboard kitchenware lamp
ledge monitor mouse mouse_pad mug nightstand
object organizer phone picture pﬁow plant

refrigerator ~ remote_control  round_table shelf sink sofa
stool table tissue_paper toilet tool towel

toy tv tv_stand wardrobe  washing_machine  washing_stuff
ence, we generate layouts with a fixed large object, specifi- steps.

cally a table, while varying the room type, such as “A table
in the office”. We calculate the related small object’s cate-
gory distribution for each room type. The results in Fig. Al1
demonstrate that the model has learned distinct category dis-
tributions for different room types. For example, “monitor”
has the highest probability of appearing in “office”, “cook-
ing_machine” is most likely in “kitchen”, and “bag” is most
often found in “Bookstore/Library”. These findings also
validate the effectiveness of our METAS CENES.

B.3. Embodied Navigation in 3D scenes

Data and Simulation Setup We use the Habitat simulator
for our data generation and simulation. For data generation,
we convert all glb format files into the desired format in
Habitat. To generate trajectories for training, we randomly
sample a start position for the agent and a navigable tar-
get object except for walls. For each trajectory, we sample
the ground-truth shortest path using PathFinder within the
Habitat simulator. Therefore, each trajectory consists of
the agent’s start position and end position, the ground-truth
shortest path, and the semantics of the target object. Then
these trajectories will be used for training the navigation
model. In the Habitat simulator, the agent’s action space con-
tains move forward (0.25m), turn left (30 degrees),
and turn right (30 degrees).

Model and Training Details We use SPOC [18] as our
shared model architecture, with SigLIP [109] image and text
encoders. We use a 3-layer transformer encoder and decoder
and a context window of 10. We evaluate the object navi-
gation task for the SPOC model trained on the ProcTHOR,
METASCENES, and Both, within the AI Habitat environ-
ment. The dataset consists of 706 scenes which are randomly
split into train/test on a 4:1 ratio. We randomly collect 100
trajectories from each training scene and 50 trajectories from
each testing scene for train/test data. We train or fine-tune
the model on our METASCENES navigation data with a
batch size of 256, a learning rate of 0.0001, and 70k training

Quantitative Metrics Following Eftekhar ez al. [17], we
use quantitative metrics containing SR (Success Rate),
EL (Episode Length), SEL (Success weighted by Episode
Length), SPL (Success weighted by Path Length), and cur-
vature. SR represents the proportion of correctly navigated
trajectories with respect to all trajectories. EL indicates how
many actions on average are needed to successfully navigate
to the target object. SEL and SPL indicate the difference
between the ground-truth path and the predicted path by
the agent. A larger SEL or SPL value indicates a closer
alignment between the ground truth path and the actual path.
Curvature measures the smoothness of a trajectory, with
larger curvature values indicating a less smooth path. Some
qualitative examples of navigation are shown in Fig. A12.
Regardless of whether the target object is seen at the be-
ginning, the agent can navigate to the destination correctly.

Scan scene

Replica scene

Figure A9. The configuration of UP AGV and its environment.
This includes the real-world scene, the scanned scene, and the
digital replica.

Table A4. Comparison on VLN experiments with HSSD

Benchmark Data Source SR(%)t EL|  Curvature| SEL? SPL?
10 scenes from HSSD 27.00  33.77 0.39 26.77 23.32
Replica CAD  METASCENES 32.00 33.71 0.46 31.56 2691

Real-world Deployment We deploy the policy trained
on METASCENES to a real-world Automated Guided Vehi-
cle (AGV), called UP. For odometry estimation, the vehicle
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Figure A10. Number of each category in preprocessed micro-scene dataset.
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Figure A11. Generated class distribution of different room types. We generate the layout with the same large furniture using the prompt
with different room types. Results show the model has learned different class distribution of different room types.

Navigate to the coffee maker

m

Navigate to the stove

Figure A12. Embodied Navigation. Demonstration of the embodied agent performing goal-directed navigation in Habitat.

Navigate to the coffee maker

Figure A13. Real-world transfer. Demonstration of the embodied agent performing goal-directed navigation in the real world.



combines data from a 2D Lidar, IMU, and wheel speedome-
ter. After receiving the predicted actions from the navigation
policy based on the digital replica of the scene, we down-
sample these actions at approximately 0.5-meter intervals to
create a sequence of local goals. UP plans a trajectory for
each local goal and computes the corresponding linear and
angular velocities using Dynamic Window Approach (DWA)
algorithm, ensuring collision-free execution. The AGV con-
figuration, the real-world scan, and its digital replica are
shown in Fig. A9. We present navigation scenarios in
Fig. A13, demonstrating that UP successfully reaches the
target by transferring the policy in simulation to the real
world.

Comparisons with Other Datasets We evaluate naviga-
tion models pre-trained on METASCENES and HSSD [40]
using the replica-CAD [82] dataset in Tab. A4. We randomly
selected 10 scenes in the replica-CAD dataset, and randomly
sampled the starting point and target object in each scene,
collecting 10 trajectories for testing. Finally, the two models
are tested on these 100 trajectories and the metrics are calcu-
lated. The results confirm that pre-training with our dataset
consistently yields superior performance, further verifying
our scene quality claim.
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