
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023 1773

Latent Domain Generation for Unsupervised
Domain Adaptation Object Counting

Anran Zhang , Yandan Yang , Jun Xu , Member, IEEE, Xianbin Cao ,
Xiantong Zhen , and Ling Shao , Fellow, IEEE

Abstract—Unsupervised cross-domain object counting has
recently received great attention in computer vision, which
generalizes the model from the source domain to the unlabeled
target domain. However, it is an extremely challenging task because
only unlabeled data is available from the target domain and the
domain gap between two domains is implicit in object counting.
In this paper, we propose a latent domain generation method
to improve the generalization ability of unsupervised domain
adaptation object counting by generating a latent domain. To this
end, we propose a domain generator with random perturbations
to learn a new latent distribution derived from the original
source distribution. The latent domain generator can extract target
information sampled in its stochastic latent representation, which
preserves the original target information and enhances the diverse
ability. Meanwhile, to ensure that the generated latent domain is
consistent with the source domain in counting performance, we
introduce a consistency loss to encourage similar output from latent
and source domains. Moreover, to enhance the adaptation ability
of the generated latent domain, we apply the adversarial loss to
achieve alignment between the latent and target domains. The
domain generator with the adversarial loss and consistency loss
ensures that the generated domain is aligned to the target while also
improving the robustness of the original source domain model. The
experiment indicates that our framework can effortlessly extend
to scenarios with different objects (crowd, cars). The experiments
also demonstrate the effectiveness of our method on unsupervised
realistic-to-realistic crowd counting problems.

Index Terms—Object counting, domain adaptation,
unsupervised learning.

I. INTRODUCTION

OBJECT counting is to estimate the number of objects in
a region of scene, and is important in computer vision

Manuscript received 16 August 2021; revised 6 February 2022; accepted 16
March 2022. Date of publication 28 March 2022; date of current version 7 June
2023. This work was supported in part by the National Key Scientific Instru-
ment and Equipment Development Project under Grant 61827901, in part by
the Fundamental Research Funds for the Central Universities of Nankai Univer-
sity 63211099, and in part by the Natural Science Foundation of China under
Grants 91738301, 62002176, and 62088101. The Guest Editor coordinating the
review of this manuscript and approving it for publication was Mr. Chuang Gan.
(Corresponding author: Xianbin Cao.)

Anran Zhang, Yandan Yang, and Xianbin Cao are with the Key Laboratory
of Advanced Technology of Near Space Information System, Beihang Uni-
versity, Beijing 100191, China (e-mail: zhanganran@buaa.edu.cn; yangyan-
dan@buaa.edu.cn; xbcao@buaa.edu.cn).

Jun Xu is with the School of Statistics and Data Science, Nankai University,
Tianjin 300071, China (e-mail: nankaimathxujun@gmail.com).

Xiantong Zhen is with the AIM Lab, University of Amsterdam, 1012 WX
Amsterdam, The Netherlands (e-mail: zhenxt@gmail.com).

Ling Shao is with the Inception Institute of Artificial Intelligence, Mo-
hamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE (e-mail:
ling.shao@ieee.org).

Digital Object Identifier 10.1109/TMM.2022.3162710

fields [5], [24], [30], [32], [52]. The populations of statistical
scenes and their density distributions are invaluable for public
management, health monitoring, and security analysis [45], [46].
For example, monitoring the number of objects is a security
problem for the public in dense scenarios, such as bus stations
and shopping malls. Existing counting methods can be roughly
divided into three categories: detection based methods [10], [55],
regression based methods [20], [27], and density map estimation
based methods [2], [68]. However, these methods [4], [6], [27],
[68] may not generalize well to unseen scenarios, especially
when there is a domain gap between the training (source) and
test (target) images. In such cases, labeling per-pixel annotations
for an unseen target dataset would entail prohibitively high labor
costs for re-training a new model.

To address the issues above, several unsupervised domain
adaptation (UDA) [12], [19], [69] is widely studied to allevi-
ate the dependency on the labeling and domain shift problem.
UDA is able to learn cross-domain generalization, and reduce the
burden on labeling the target domain. In object counting, UDA
is mainly implemented under the adversarial learning frame-
work [29], [59]. CODA [29] directly aligns the same distribu-
tion between the source and target domain to adapt the model
across different object categories datasets. SE-CycleGAN [59]
can solve the explicit domain gap (style) in synthesis-to-real
crowd scenes, transforms source data into a seen target scene.
However, there are complex and implicit gaps between differ-
ent counting datasets, such as noisy scenes, various scales, and
multi-level densities, especially for different object categories
(people, cars). Therefore, it is essential to generate a new do-
main from the source and target domain, which can be adaptive
to the counting model.

To tackle these limitations, in this paper, we propose a latent
domain generation method to learn a new domain for unsuper-
vised domain adaptation object counting. We generate a new
domain from the source and target domain, as perturbations to
the original source domain, to improve the generalization ability
of the pretrained model. Motivated by the unsupervised loss in
semi-supervised learning [48], which penalized different predic-
tions for the same training input with stochastic perturbations,
to improve the generalization ability for the model trained with
the limited label. Unlike the unsupervised loss [48] in which
the perturbation is stochastic, the proposed new domain has the
direction that is near the target domain and contains stochastic
characteristics. To generate a new domain, we propose a do-
main generator with the objective of learning a new domain,
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derived from the source and target domain. Our domain genera-
tor combines an auto-encoder with a random sampling method
for the target domain, which delivers generalization ability in
cross-domain counting datasets. The stochastic target charac-
teristics are encoded in a low-dimensional latent space, combin-
ing the source information to generate a new domain derived
from the original two domains. To make the counting model
robust to the generated domain, we apply the consistency loss
between the generated and original source domain outputs space
to ensure consistency in these two domains. We further apply
an adversarial loss in the feature space to align the distribution
between the generated domain and the target domain. With the
constraint of the consistency loss and the adversarial loss, the
generated domain is to simultaneously approach the source and
target domain, and to further make the unlabeled target domain
adaptive to the labeled source counting model.

The contributions are summarized as follows:
� We propose a novel domain generation method, which can

improve the generalization ability of unsupervised crowd
counting by learning new latent domain distributions be-
tween the source and target domain in a novel domain gen-
erator.

� We propose to employ the consistency loss and adversarial
loss for the domain generator to ensure that the generated
domain is close to the source and target ones.

� Extensive experiments show that our method has a sig-
nificant improvement in unsupervised domain adaptation
object and crowd counting. And the ablation study demon-
strates the effectiveness of our proposed approach.

The remaining of this paper is organized as follows. We intro-
duces related works in Section II. The proposed Latent Domain
Generation (LDG) method is described in Section III. We re-
ports the experimental results and ablation study in Section IV.
The conclusion is presented in Section V.

II. RELATED WORK

A. (Semi-)Supervised Crowd Counting

Supervised Crowd Counting counts the number of people. It
relies on labeling the location of each person in the region and
depends on the detection, regression, and density-based meth-
ods. Early works [4], [6], [10], [27], [55] generally use a method
based on detection and regression to count the total number of
people in the scene. These methods are typically hindered by the
intrinsic challenges of the occlusions, undersize, low-quality is-
sues, and the holistic features [10], [55] of individuals in a scene.
Recent detection based methods [10], [22], [37], [38], [55] had
manually annotated the bounding boxes or point supervision on
the dataset and trained a detection network for crowd counting.
Current density map based methods [1], [8], [35], [50], [57],
[63], [68] have shown great success in crowd counting, which
first generate density map ground-truth and then assigned crowd
counting as a pixel regression problem. In density-based meth-
ods, some approaches are aimed at exploiting multi-scale fea-
tures or multi-context information to deal with the people scale
variation problem [2], [3], [31], [68]. Zhang et al. [68] and Sam
et al. [47] employed multi-column networks with various kernel

sizes to gain different receptive fields for each people. To ex-
plore the structural information in the density map, SANet [3]
tried to measure the structural similarity between ground-truth
and output density maps by exploring each local information
during computing loss. With the success of attention mecha-
nisms, RAZN [31] proposed to iteratively locate regions with
high ambiguity in high-resolution space. These methods count
the number by the density map that can also provide the location
information of the crowd, which are suitable for both sparse and
crowded scenes.

Semi-supervised Crowd Counting is the method to learn with
a small amount of labeled data and a large amount of unlabeled
data for crowd counting [29], [44], [59]. Tan et al. [52] ex-
tracted sequential information between unlabelled samples and
their temporally neighboring samples to build a semi-supervised
regularization. To further explore intrinsic structures of unla-
belled data, Loy et al. [5] proposed an active and semi-supervised
regression model, by the manifold regularization to assimilate
the count estimation of two nearby crowd pattern points in the
manifold. These methods can learn similar visual characteristics
among the most informative frames, which show the transfer-
ability performance in sparse and simple video counting scenes.
With recent demands on counting dense scenes, few-shot count-
ing methods resort to use a few labeled data in a query set when
transferring the model from the support set. Wang et al. [61]
exploited few labeled target data to learn two matrices (product
factor and bias) for each source neuron via a linear transforma-
tion in the parameter level. Zhao et al. [51] iteratively annotated
the most informative images in an active learning framework to
learn the counting model over unlabeled data.

B. Unsupervised Crowd Counting

Recently, due to the demand for crowd counting in large-scale
dense crowds, the labeling burden becomes more onerous than
other visual tasks in large-scale dense crowds. Some methods
address the labeled burden on specific datasets, such as unsu-
pervised domain adaptation (UDA) [12], [13], [19], [29], [59],
[60], [69]. These methods aim to improve the performance in
the unlabeled target domain by using source data. UDA [19],
[53], [56], [69] can only utilize the target unlabeled data to
eliminate the labeled burden. The general idea of UDA usually
learns the domain-invariant features between source and target
domain by minimizing the difference of the distributions. Recent
unsupervised crowd counting works [29], [59] utilized the pre-
trained model on labeled source domains to generalize a model
for unlabeled target domains based on adversarial learning.
Wang et al. [59] proposed the SE CycleGAN method, which
translates synthetic data to photo-realistic crowded scenes.
CODA [29] addressed the UDA problem in object counting via
scale aware adversarial learning to align scene layout and local
context between source and target (crowd, cars) images.

Although these GAN and CycleGAN methods [29], [59] can
solve the explicit domain gap (style) in synthesis-to-real, there
still exist major problems, such as the imitations of transferring
styles and the limited synthetic scenes. As the style is not the
only problem of domain gaps, there are also other implicit gaps

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on July 24,2024 at 03:38:11 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: LATENT DOMAIN GENERATION FOR UNSUPERVISED DOMAIN ADAPTATION OBJECT COUNTING 1775

Fig. 1. Overview of our proposed Latent Domain Generation (LDG) Method. The overall framework includes four blocks: Feature Generator, Domain Generator,
Adversarial Discriminator, and Density Decoder. Feature Generator extracts the base feature for counting; Domain Generator use the auto-encoder to obtain a
generated domain; Adversarial Discriminator learn the domain-invariation between the generated domain and target domain; Density Decoder decodes the final
density maps. To empower these blocks, there are three training losses in our method: Supervised Loss (Lsup), Consistency Loss (Lcon) and Adversarial Loss
(Ladv). Lsup ensures that the feature generator and density decoder for counting is accurate; Lcon ensures that the model is robust to data in both source domain
and generated domain; Ladv encourages the generated domain to align to the target domain.

(noisy scenes, various scales, and multi-level densities, different
types of objects). And the synthetic dataset proposed in [59],
with only 100 scenes except for similar places, which is limited
and simple compared with the real dataset (eg., UCF-QNRF [21]
has probably 1535 diverse scenes). In the problem of realistic-to-
realistic adaptation, the scenes are drastically changing, and the
objects are also diverse. Our LDG first can learn a latent domain
derived from the source and target domain in an auto-encoder,
and can also increase the diversity of source domains due to
its stochastic latent representation in the sampling process of
the auto-encoder. Experiment results demonstrate that LDG has
significant effects in realistic-to-realistic adaptation problems,
additionally for the different objects counting problem.

C. Domain Adaptation

Domain Adaptation is a well researched topic for the task of
classification, detection and semantic segmentation [11], [39],
[43], [58], [62], [64]. Domain Adaptation aims to maximize
the performance on a given target domain using labeled source
domains [58]. Recent works put their efforts to bridge the gap
between the domains mostly based on adversarial learning meth-
ods [29], [53], [56] or style-transfer solution [59] in object
counting and semantic segmentation. Some works [14]–[16]
have shown that generating intermediate domains is helpful to
bridge the distribution gap between source and target domains.
Gong et al. [15] proposed a domain flow generation (DLOW)
model to improve the generalization ability of learned models,
by generating a continuous sequence of intermediate domains
flowing shifting from the source domain to the target domain.
Yang et al. [65] proposed a Bi-Directional Generation domain
adaptation model to synthesize the intermediate domains condi-
tioned on each domain, in which the augmented samples play as
a bridge to reduce the domain discrepancy. Compared to the
domain generation works, our work aims to use a domain

generator with random perturbations to generate a latent domain,
to leverage the task of domain adaptation network as its own
guide toward useful generated domains that enhances the gen-
eralization capability of the model.

III. LATENT DOMAIN GENERATION (LDG) METHOD

In this section, we first introduce the preliminary of unsuper-
vised cross-domain crowd counting, which contains the over-
all structure of our proposed method and the representation of
each component in Section III-A. We second propose the Latent
Domain Generator in Section III-B. We next describe our pro-
posed two methods, Learning Consistency in Source Domains
in Section III-C, and Learning Cross-Domain Similarity in Sec-
tion III-D. Finally we provide the implementation details. An
overview of our proposed Latent Domain Generation (LDG)
method is illustrated in Fig. 1.

A. Preliminary

Task formulation: Given a labeled dataset in a source domain
and an unlabeled dataset in a target domain, the goal of un-
supervised cross-domain crowd counting is to train a counting
model from the source domain that generalizes well on the tar-
get domain. However, the domain shift problem (e.g., scenes,
crowd levels, and scale variations) makes the pretrained model
on the source domain overfit on the target domain in previous
works [29], [59]. Direct aligning the source and the target do-
main is difficult and ambiguous. Therefore, our goal is to find
the latent domain from the source and target domain to help
adaptation.

Let XS = {xS
i , y

S
i } represents a labeled dataset from the

source domain, where i = 1, 2, . . .,K. K is the number of sam-
ples in the source dataset.xS

i and ySi are the source image sample
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Fig. 2. G(x; θg) is our proposed latent domain generator. Each source do-
main sample xS will be transformed into x̂S with the target information, which
represents the new generated domain image.

and ground truth density map, respectively. XT = {xT
i } repre-

sents the unlabeled dataset, where i = 1, 2, . . .,M , M is the
number of samples in the target dataset. xT

i is the target image
sample without its ground truth density map.

{XS , XT } ⇒ TUDA. (1)

TUDA represents the task of the unsupervised domain adapta-
tion. The goal of TUDA is to improve the generalization ability
of the source model on the target domain without the labels of
target domains.

Network components: Let G(x; θg) be a Domain Generator
which is a function parameterized by θg which maps an image x
to a generated representation x̂. Let F (x; θf ) be a feature gen-
erator parameterized by θf which maps an image x to a hidden
representationh representing features that in a high-level dimen-
sion. Let D(h; θd) be a discriminator making the features from
the two domains have a similar distribution. Finally, M(h; θm)
represents a density map decoder function, parameterized by
θm that maps from hidden representations h to the density map
predictions y.

B. Latent Domain Generator

The auto-encoder [18] is used to reconstruct high-dimensional
input vectors by low-dimensional codes, which is an efficient
way to progressively reveal low-dimensional, nonlinear struc-
ture [9], [18], [26], [40], [54]. To simultaneously encode the
target domain information and add randomness for the low-
dimensional latent representation, we generate a latent domain
that introduces randomness in the latent low-dimensional rep-
resentation at extracting information of the target domain, with
maintaining source information, which preserves the original
target information and enhances the diverse ability. Let xS and
xT be the image of objects from the source and target datasets.
The domain generator is developed on an auto-encoder struc-
ture. x̂S is the output of the domain generator G(x; θg), which
is shown in Fig. 2. The formulation is defined as:

x̂S = G(xT , xS ; θg), (2)

where each source domain sample xS will be transformed into
a disturbed sample x̂S by the domain generator G(xT , xS ; θg)
with parameter θg .

To extract target information and increase the diversity of
target information, we depatentvarioy the sampling operation,
which is implemented as the reparameterization trick in the
sampling process in q(z|xT ). Here z is the latent variable, our
method is to sample the stochastic latent representation in the

target domain in a distribution q(z|xT ), and to encode these in-
formation for the original source domain to obtain a new latent
domain sample x̂S . The stochastic sampling method can enhance
the diversity of extracted feature, while preserving the original
target information, which can further enhance the diversity of
the new generated domain. Since the generated latent source
domain is expected to explore the target-related domain for the
original source domain, we also adopt the adding operation to
release the burden of domain generator which is shown in Fig. 2.

With our latent domain generator, the generated new domain
can maintain the source information with the stochastic target
domain characteristics. This is beneficial to the unsupervised do-
main adaptation. First, the newly generated domain can improve
the robustness of the model by the Supervised Loss and Con-
sistency Loss in the Source Module and Consistency Module
in Fig. 1. In these processes, the stochastic sampling in extract-
ing target characteristics can greatly improve the diversity of the
newly generated domains, thereby improving the robustness of
the model, while also preserving the original target characteris-
tics. Second, in the Adaptation Module, it is more feasible to
narrow the distance between the newly generated domain (the
source information with the stochastic target domain character-
istics) and the target domain, rather than directly narrowing the
distribution of two different domains. Next, we introduce these
in detail.

C. Learning Consistency in Source Domains

Π-model with the unsupervised loss in semi-supervised learn-
ing [48], is one of the popular approaches in semi-supervised
learning, which encourages consistent network output between
two realizations of the same input stimulus, under two differ-
ent conditions. Π-model can make the model robust to the input
noise, encourages consistent output for the input and the same
input with noise, both for labeled data and unlabeled data. In-
spired by this, we feed our original source domain input xS

and the generated domain input x̂S to the supervised counting
model, and we propose to employ the consistency loss to ensure
the output of the generated domain is consistent with the origi-
nal domain. In detail, the consistency loss computes pixel-wise
mean square error loss between the final predicted density maps
of both disturbed sample x̂S and the source domain sample xS :

LS
con =

1

N

N∑
i=1

||M(F (xS ; θf ); θm))i

−M(F (x̂S ; θf ); θm)i||22, (3)

where N denotes the total pixels, each sample xS goes through
a feature generator F (x; θf ) and a density decoder M(x, θm).
And the results on source domain sample xS serves as a soft
label for the disturbed sample x̂S .

D. Learning Cross-Domain Similarity

To align the generated latent domain with the target domain
distribution, we propose an adaptation module with an adver-
sarial loss to learn similarity between the generated domain and
the target domain. The disturbed source image x̂S for a source
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input image xS is defined in (2) as the output of an auto-encoder
G(xT , xS ; θg). Our intuition is that the adversarial approach can
narrow the gap between two domains, to make the generated and
target domain share similarities in the inner representations.

Followed the unsupervised domain adaptation framework
based on adversarial learning, the proposed model consists of
three parts: (1) a Domain Generator G(xT , xS ; θg) to encode
target characteristics within the disturbed source images; (2)
Feature Generators F (x̂S ; θf ) and F (xT ; θf ) to share strong
similarities in complex representations between the source and
target domain; (3) an Adversarial Discriminator D(h; θd) to
distinguish whether the input is from the latent source or
target domain. Here, we introduce the training step for the
adversarial loss: Generator-step for training generators and
Discriminator-step for training the discriminator.

Generator-step: There are two generators in this step:
the feature generator F (xS ; θf ) and the domain generator
G(xT , xS ; θg) to ensure the consistency for the feature gen-
erator F (xS ; θf ) and the density map decoder M(F (xS ; θf )),
which is implemented as consistency lossLS

con. The consistency
loss LS

con is crucial to ensure outputs consistency between the
generator samples and the corresponding source images. Then
adversarial loss LT

adv fools the discriminator by maximizing the
probability of the target feature being considered as the source
feature. The overall loss is:

LUDA = LS
sup(M(F (xS ; θf ); θm), yS)

+ LS
con(M(F (xS ; θf ); θm),M(F (x̂S ; θf ); θm))

+ LT
adv(D(F (xT ; θf ); θd), 1), (4)

where the x̂S = G(xT , xS ; θg).LS
con andLS

sup are implemented
as the �2 loss, that is the pixel-wise mean square error loss for
pixel-level regression tasks. LT

adv is implemented as the cross-
entropy loss.

Discriminator-step: In this step, D(·; θd) distinguishes
whether the input is from the latent source domain or the tar-
get domain. G(xT , xS ; θg) helps distinguish the target and the
generated source features, motivated by the adversarial train-
ing strategy under the unsupervised domain adaptation frame-
work [53]. The loss is defined as:

LUDA = LS
adv(D(F (x̂S ; θf ); θd), 1)

+ LT
adv(D(F (xT ; θf ); θd), 0), (5)

where LS
adv and LT

adv represent the cross-entropy loss.
Motivated by unsupervised domain adaptation works [25],

[29], [53], [56], we jointly train the counting networks and dis-
criminators in one stage, with the ultimate goal of minimizing
the counting loss in generators for source images, while learning
consistency in the source domain and similarity in cross-domain.
The overall algorithm is described in Algorithm 1.

E. Implementation Details

We use the general network (VGG-16 [49]) as the back-
bone for the feature generator. For the cross-domain counting
in real-to-reals datasets, we first pre-train a model on a labeled

Algorithm 1: LDG.

Require: XS = {xS
i , y

S
i } source images and labels

Require: G(·; θg) domain generator
Require: F (·; θf ) feature generator
Require: M(·; θm) density decoder
Require: D(·; θd) adversarial discriminator
Require: XT = {xT

i } target domain images
1: for each epoch do
2: for each minibatch do
3: if Step Generator = True then
4: Compute loss followed the Generator-step as

(4): LUDA ←
LS
sup(x

S , yS) + LS
con(x

S , x̂S) + LT
adv(x

T , 1)
5: end if
6: if Step Discrimintor = True then
7: Compute loss followed the Discriminator-step as

(5): LUDA ← LS
adv(x̂

S , 1) + LT
adv(x

T , 0)
8: end if
9: end for

10: end for

source domain (e.g., ShanghaiTech Part A [68]), and save the
pre-trained model to adapt to the unlabeled target domain.

The encoder of Domain Generator G(x; θg) first applies the
kernel size 3 for two convolutional blocks which transform
the channel from 3 to 64 to 256. Each convolutional block uses
the Maxpool to downsample the feature map. Then we apply
some residual convolutional blocks in channel 256. And the de-
coder does the operation to restore the image size corresponding
to the input. The Domain Generator G(x; θg) network parame-
ters are randomly initialized by a Xavier with a mean zero and a
standard deviation of 0.01. And the Feature Generator F (x; θf )
and the Density Decoder M(h; θm) network are initialized by
the source pretrained model. Adam optimizer with a small learn-
ing rate of 1e− 5 is used to G(x; θg), F (x; θf ) and M(h; θm),
1e− 3 is used to D(h; θd). Correspondingly, the hyper-
parameter weight of LS

sup, LS
con and LT

adv are 1.0, 1.0 and 0.2.
The network is trained with a batch size of 10 during pretraining
on the source domain, and a batch size of 4 during adapting to
the target domain. The implementation is based on Pytorch.

IV. EXPERIMENTS

In this section, we conduct experiments on crowd-to-cars un-
supervised object counting and real-to-real unsupervised crowd
counting in Section IV-C1 and Section IV-C2, respectively. In
ablation studies, we demonstrate the effectiveness of our pro-
posed modules.

A. Experimental Setup

Data Preparation: Since annotations for crowd images are
labeled at the center of the pedestrian head, we use the Gaussian
kernel to convert these points to generate the crowd density map.
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Fig. 3. Real-world crowd/car datasets. It can be seen that each dataset all has multiple densities, multiple scales, and complex background issues.

The normalized Gaussian kernel is defined as :

D(x) =
∑
xi∈S

δ(x− xi) ∗Gσ, (6)

where D denotes the crowd density map and S is the set of all
annotated points. Given a point at pixel xi, it can be represented
with a delta function δ(x− xi). The density map can be ob-
tained by convolving the δ(x− xi) with Gaussian kernel with
parameter Gσ . We fix Gaussian kernel size to be 15× 15. The
density map is 1/2 size of the original image.

Evaluation Metrics: The count error is commonly measured
by two metrics, i.e., Mean Absolute Error (MAE) and Mean
Squared Error (MSE),

MAE =
1

M

M∑
i=1

|yi − y′i|, (7)

MSE =

√
1

M

∑M

i=1
|yi − y′i|2, (8)

and additionally GMAE,

GMAE(L) =
1

M

M∑
i=1

⎛
⎝ 4l∑

l=1

|yli − (y′i)
l|
⎞
⎠ , (9)

where M is the number of test samples, yi is the ground truth
count, and y′i is the estimated count corresponding to the ith

sample. MAE indicates the accuracy of the predicted result and
MSE measures the robustness. l means the region, GMAE(L)
divides image into a grid of 4 L non-overlapping subregions, and
the error is calculated as the sum of MAE in each sub-region.
Note that GMAE(0) is equivalent to MAE.

B. Datasets Details

Here we introduce four datasets, one car dataset [17], and three
crowd datasets [21], [68]. The details are in Fig. 3. It can be seen
that most crowd counting datasets can be regarded as complex

domains due to the variable backgrounds, scale variations, and
multi-level densities. And the car counting dataset is different
from most crowd datasets in objects category and scenarios.

ShanghaiTech [68] is a still image dataset, with arbitrary
camera perspectives and crowd density. It contains 1,198 an-
notated images including both internet and street view images.
Part A is has 482 images, which are randomly crawled from the
Internet, most of them have a large number of people. There are
tremendous occlusions for most people in each image, and the
scale of people is variable. As shown in Fig. 3, Part A contains
moderate level density crowds.

ShanghaiTech Part B [68] is taken from the busy streets of
metropolitan areas in Shanghai. ShanghaiTech Part B has 716
images, also has tremendous occlusions conditions and scale
diversity in scenes, as shown in Fig. 3.

UCF-QNRF [21] is a large-scale dataset that contains a wide
variety of observation viewpoints, densities, and lighting vari-
ations. The images are present in realistic scenarios captured
in the wild so that they contain buildings, roads, and variable
scenes. Compared with other datasets, UCF-QNRF dataset both
contains high-level and low-level density, has 1, 535 images with
1, 251, 642 annotations. We follow the setting as in [21], and
split the training and test set with 1201 and 334 images, respec-
tively. The dataset has a high average resolution of 2013× 2902.
Fig. 3 shows the high-density crowd.

Trancos [17] contains 1244 images of different traffic scenes
collected from real video surveillance cameras. It annotates
46796 vehicles totally and provides a region of interest for each
image to specify the scope of the evaluation. Some samples are
shown in Fig. 3.

We do adaptations in crowd-to-car counting, which is the
ShanghaiTech Part A to Trancos in Section IV-C1. In Sec-
tion IV-C2, we do four types of adaptations. Here in crowd
scenes, dense-to-sparse is from ShanghaiTech Part A to Shang-
haiTech Part B, and sparse-to-dense is from ShanghaiTech Part B
to UCF-QNRF, ShanghaiTech Part A to UCF-QNRF and Shang-
haiTech Part B to ShanghaiTech Part A.
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Fig. 4. The left two columns and the rigte two columns are two samples in CODA and ours, respectively. In each sample, the first row are images and ground
truth; the second row is CODA noadapt and with adaptation; the third row is our LDG with noadapt and adaptation. The last row are the enlarged image with
increased contrast to 90%.

Fig. 5. Unsupervised cross-domain object counting with our Latent Domain Generation (LDG). From left to right: (1) images; (2) ground truth; (3) Without
adaptation; (4) Without adaptation (contrast = 90%); (5) With our LDG; (6) With our LDG (contrast = 90%).

C. Performance and Comparison

We do experiments for unsupervised cross-domain crowd
counting with our Latent Domain Generation (LDG). There are
two parts in our experiments: crowd-to-cars objecting count-
ing is in Section IV-C1 and real-to-real crowd counting in Sec-
tion IV-C2.

We show the samples in Fig. 5. We can see that the quality
of the unsupervised target dataset density map is significantly
improved by using our LDG method.

1) Crowd-to-Car Object Counting Results: In this section,
we present the adaption results across different categories, from
the crowd to the cars. Trancos dataset [17] contains different
traffic scenes collected from real video surveillance cameras.

Table I presents the results compared with the recent super-
vised state-of-the-art approaches: Lempitsky et al. [28], Hydra-
CNN [42] and CSRNet [30]. We can see that in unsupervised
domain adaptation object counting, LDG verified its effective-
ness. The samples in Fig. 5 show the adaptation performance in
the first two rows. After our density adaption process, our LDG
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TABLE I
GMAE COMPARISON RESULTS UNDER SHANGHAITECH PART A TO TRANCOS SETTING. HERE THE COLOR BLUE AND GREEN IS THE BEST AND SECOND RESULT IN

RECENT METHODS. (NOTE: ALL THE RESULTS OF THESE METHODS ARE PUBLIC FROM THESE PAPERS)

TABLE II
PERFORMANCE COMPARISON ON OUR DCNET FOR REAL-TO-REAL DATASETS, FROM THE SOURCE DOMAIN (SHANGHAITECH PART A [68]) TO THE TARGET

DOMAINS (SHANGHAITECH PART B [68] AND UCF-QNRF [21]). AND FROM THE SOURCE DOMAIN (SHANGHAITECH PART B [68]) TO THE TARGET DOMAINS

(SHANGHAITECH PART A [68] AND UCF-QNRF [21]). HERE “-” REPRESENTS NO PUBLIC RESULTS. HERE THE COLOR BLUE AND GREEN IS THE BEST AND

SECOND RESULT IN RECENT METHODS. (NOTE: ALL THE RESULTS OF THESE METHODS ARE PUBLIC FROM THESE PAPERS.)

enhances performance in all the four GAMEs compared with
Baseline. And we enhance performance up to 13.09 in GMAE3
which achieves the best result and outperforms the supervised
methods [28], [30], [42]. We also get competitive results in the
other three GAME metrics. All the results show that our LDG
presents great effectiveness on adaption across categories.

2) Real-to-Real Crowd Counting Results: In real-to-real
adaptation, we do four types of adaptations. Here in crowd
scenes, dense-to-sparse is from ShanghaiTech A to Shang-
haiTech B (A to B), and sparse-to-dense is from ShanghaiTech
B to UCF-QNRF (B to Q), ShanghaiTech A to UCF-QNRF (A
to Q), and ShanghaiTech B to ShanghaiTech A (B to A). These
results are shown in Table II.

Dense-to-sparse Crowd Counting: From ShanghaiTech A to
ShanghaiTech B (A to B) adaptation, Table II presents the re-
sults in both supervised methods and unsupervised methods.
We report performances of the state-of-the-art full-supervised
approaches, including MCNN [68], Wan et al. [23] and CSR-
Net [30]. We also show the performance of some works with no
adaptation [7], [34], [67], [68] in cross-dataset. Compared with
other unsupervised adaptation methods without any annotations
on the target dataset, our LDG achieves competitive MAE and
MSE results in [7], [29], [34], [66]–[68] in all adaptation set-
tings. For the dense-to-sparse (A to B) adaptation, our LDG gets
the best MSE and the second MAE in all methods. In addition,
the quality of our density map is very closer to the ground truth
compared to CODA [29] as shown in Fig. 4.

Sparse-to-dense Crowd Counting: For the sparse-to-dense
adaptation, the performance in the adaptations of ShanghaiTech

B to UCF-QNRF (B to Q), ShanghaiTech A to UCF-QNRF (A
to Q), and ShanghaiTech B to ShanghaiTech A (B to A) is com-
petitive. Most of our adaptation results get the best and second
performance in terms of MAE and MSE compared with other
methods [7], [29], [34], [66]–[68]. Our LDG gets the best per-
formance of MSE in A to B and B to A, and gets the second
performance of MAE in all results. Fig. 5 presents some exam-
ple results for adapted density maps. We can see that our LDG
improves the quality of density maps compared with the result
without adaptation.

D. Ablation Study

We first briefly show the benefit of applying the adaptation
module and consistency module in Section IV-D1. Then we an-
alyze the effectiveness of our latent domain generator in Sec-
tion IV-D2, comparing it with noise embedding and vanilla
auto-encoder. We show the analysis for architectures and hyper-
parameters in Section IV-D3 and Section IV-D4.

1) Effectiveness of Different Modules: Here we prove the
benefit of each component of LDG, including the adaptation
module and consistency module. Results are shown in Table IV.
We can see that our LDG gets the best performance in all
adaptation settings, which demonstrates that the proposed
adversarial and consistency loss with our domain generator are
effective. With our Domain Generator (DG), the adaptation
with only adversarial loss performs worse (from 118.5 to
136.6 in terms of MAE) than the proposed LDG due to that
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TABLE III
COMPARISON ON DIFFERENT ARCHITECTURES OVER HOURGLASS [41] AND VGG-16 [49]. THERE ARE TWO TASKS SETTINGS, SUPERVISED LEARNING ON

SHANGHAITECH PART A [68], AND UNSUPERVISED DOMAIN ADAPTATION FROM THE SOURCE DOMAIN (SHANGHAITECH PART A [68])
TO THE TARGET DOMAINS (SHANGHAITECH PART B [68] AND UCF-QNRF [21])

TABLE IV
ABLATION STUDY ON DIFFERENT MODULES. ARROWS IN ALL TABLES

INDICATE THE FAVORABLE DIRECTIONS OF THE METRIC VALUES. THIS IS IN

THE ADAPTATION FROM THE SOURCE DOMAIN (SHANGHAITECH PART B [68])
TO THE TARGET DOMAIN (SHANGHAITECH PART A [68]). BEST PERFORMANCE

IN EACH GROUP IS BOLD

TABLE V
COMPARISON OF DIFFERENT COMPONENTS IN THE ADAPTATION MODULE. THIS

IS IN THE ADAPTATION B TO A, FROM THE SOURCE DOMAIN (SHANGHAITECH

PART B [68]) TO THE TARGET DOMAIN (SHANGHAITECH PART A [68]).
RANDOM NOISE IS FROM A STANDORD DISTRIBUTION n ∼ N(0, 1). VANILLA

AUTO-ENCODER IS AN ENCODER-DECODER WITHOUT NOISE

there is no constraint for DG from the source domain. While the
adaptation only with consistency loss also performs worse than
LDG (MAE/MSE: 118.5/190.1 v.s. 122.7/192.8) because of
unaligned distributions. Furthermore, if we finally drop out the
domain generator, our LDG degenerates into the vanilla adapt,
a universal adversarial training method in unsupervised domain
adaptation, like CODA [29] in crowd-to-car counting. Our
LDG surpasses the vanilla adapt results, and achieves the best
performance. The experiments demonstrate the effectiveness of
our LDG with the proposed adaptation and consistency module.

2) Effectiveness of Latent Domain Generator: Our adapta-
tion module consists of a domain generator, where the domain
generator is an auto-encoder with random perturbations. Here
we show the effectiveness of the designed domain generator
in this part. The simplest choice is adding the random noise
perturbation to the source domain as shown in Table V. We also
show the results of taking the vanilla auto-encoder as the domain
generator, which is a simple encoder-decoder without noise, as
shown in the last row in Table V. The results of random noise
and vanilla auto-encoder show some improvement compared
to the baseline (NoAdapt). While our LDG is the way to com-
bine the random characteristics with the target information in an
encoder-decoder network. Thus, the improvement of our domain
generator is reasonable due to the random characteristics bring-
ing perturbations to the model, while the auto-encoder structure

TABLE VI
DETAILED ARCHITECTURE OF LDG. WHERE CONV. (A, B, C) REPRESENTS THE

CONVOLUTION OPERATION OF KERNEL SIZE = A*B AND OUPUT CHANNEL =
C. BN REPRESENTS THE BATCH NORM OPERATION. RELU, LEAKY-RELU AND

SIGMOD REPRESENT THE ACTIVATION FUNCTION

further extracts the target information with perturbations into a
latent distribution in a generated domain space.

3) Comparison on Different Architectures: In this part, we
re-examine the choice of different architectures, and conduct
experiments over VGG-16 [49] and Hourglass [41], where
VGG-16 [49] is commonly used in recent state-of-the-art super-
vised/unsupervised counting benchmarks (e.g., CSRNet [30],
CAN [36], CODA [29], SE-CycleGAN [59]) and Hourglass [41]
is a high-resolution-friendly architecture with the details for im-
ages. We employ the Hourglass architecture in [41] by stacking
two hourglasses, which is with comparable parameters (13.3 M)
with VGG-16 (13.8 M). The feature encoder and density de-
coder are from the front-backbone after all the skipping con-
nections and the last convolutional layer of stacked hourglasses,
respectively. The stacked Hourglass is trained under the same
settings of training LDG for fair comparison, as shown in
Table III. Firstly, in supervised learning setting, Hourglass sur-
passes the VGG-16 in SHA dataset in terms of MAE and MSE
(66.7/106.9 v.s. 71.4/125.4). In the unsupervised domain adapta-
tion experiments, the Hourglass can hardly surpass the backbone
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Fig. 6. Illustration of performance comparison when we set different values
αcon and αadv for Lcon and Ladv , in the adaptation from the source domain
(ShanghaiTech Part A [68]) to the target domain (ShanghaiTech Part B [68]).

VGG-16 in terms of all metrics, but could also get competitive
results compared with recent state-of-the-art methods in Table II.
Meanwhile, the performance of Hourglass architecture does not
drop significantly compared with VGG-16 in our LDG, which
demonstrates the robustness of the LDG and reflects that our
method is not very sensitive to the base architectures.

4) Analysis of the Hyper-Parameters: To verify the choice
of hyper-parameters for the proposed losses, we conduct exper-
iments to evaluate their performance under different values of
them, in the adaptation from ShanghaiTech Part A [68] to Part
B [68]. The consistency loss is used to regularize the source do-
main and latent domain to avoid uncontrollable noise domain far
away from the original source domain, and the adversarial loss
can narrow the discrepancy between the latent domain and target
domain.As shown in Fig. 6, LDG gets the best results when the
weight of the consistency and adversarial loss as 1.0 and 0.2,
respectively. Meanwhile, the counting accuracy does not drop
significantly in some conditions with different weights of Ladv

and Lcon, which demonstrates the robustness of our LDG.

V. CONCLUSION

In this paper, we propose a latent domain generation method
for unsupervised object counting, which tackles the problems
of complex domain shifts across domains. The domain gener-
ator can generate latent domain distribution with random per-
turbations from the target domain. At the same time, under the
constraint of consistency loss, the robustness of the model to dif-
ferent distributions can be guaranteed. Experiments have proved
that compared with the previous methods, aligning the distribu-
tion of the generated domain and target domain with the ad-
versarial learning improves the performance of unsupervised
domain adaptation objects counting.

APPENDIX

In this Appendix, we provide the Detailed Architecture of
LDG. It introduces the detailed architecture of four blocks in
our Latent Domain Generation (LDG) network: Feature Gener-
ator, Domain Generator, Adversarial Discriminator, and Density
Decoder.

Feature Generator is constructed with the first 13 convolution
layers from VGG-16 [49] in realistic-to-realistic. The output size
of VGG-16 Feature Generator is [Batch, 512, H/8,W/8]

The Domain Generator contains some convolution layers,
which is an auto-encoder architecture. The encoder of Domain
Generator contains two convolutional layers kernel size 3×3,
the channels of each layer are {64, 256} respectively. Each con-
volutional layer adds the maxpooling operation. Then we apply
some residual convolutional layers in channel 256 and kernel
size 3. And the decoder does the operation to restore the image
size corresponding to the input.

The Adversarial Discriminator contains five convolutional
layers with stride of 2 and kernel size 4×4, the channels of
each layer are {64, 128, 256, 512, 1} respectively.

The Density Decoder increases the density size comfortably
to the ground truth.
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