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Abstract—Fine-grained visual categorization aims to recognize
objects from different sub-ordinate categories, which is a chal-
lenging task due to subtle visual differences between images. It is
highly desired to identify discriminative regions while achieving
highly non-linear compact representation for fine-grained visual
categorization. However, existing methods either rely on manually
defined part-based annotations to indicate the distinctive regions
or operate on longitudinal vectors to capture the non-linear infor-
mation, which may lose important spatial layout information.
In this paper, we propose the Attentional Kernel Encoding Net-
works (AKEN) for fine-grained visual categorization. Specifically,
the AKEN aggregates feature maps from the last convolutional
layer of ConvNets to obtain a holistic feature representation.
By Fourier embedding, it encodes features from both the lon-
gitudinal and transverse directions, which largely retains the
spatial layout information. Moreover, we incorporate a Cascaded
Attention (Cas-Attention) module to highlight local regions that
distinguish among subordinate categories, enabling the AKEN to
extract the most discriminative features. Working in conjunction
with the attention mechanism, the proposed AKEN combines the
strengths of ConvNets and kernels for non-linear feature learning,
which can establish discriminative and descriptive feature repre-
sentations for fine-grained image categorization. Experiments on
three benchmark datasets show that the proposed AKEN delivers
highly competitive performance, surpassing most existed methods
and achieving state-of-the-art results.

Index Terms—Fine-grained visual Kernel

encoding, attention.

categorization,

I. INTRODUCTION

INE-GRAINED visual categorization (FGVC) has
attracted extensive research efforts in computer vision,
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Fig. 1.
row are from the same subcategory, Least Auklet. The images in the second
row are from three different subcategories, Brewer Blackbird, Rusty Blackbird
and Red Winged Blackbird. Note that these images are even hard for human
to recognize. Therefore, FGVC is a quite challenging task.

Image examples from CUB-200-2011 dataset. The images in the first

and it aims to recognize objects from different subordinate
categories, e.g., species of birds, models of cars, or different
brands of planes. Nowadays, popular convolutional neural
networks (ConvNets) have achieved great success in many
tasks [1]-[6]. However, as for FGVC, it is still a challenging
task and remains unsolved. The challenge is mainly caused
by the subtle inter-class differences and large intra-class
variations of fine-grained images [7]. On the one hand,
as shown in Fig. 1, the three images in the first row
belonging to the same subcategory called Least Auklet
presenting different appearances due to views, poses and
complex backgrounds. It is hard to recognize them even by
human. On the other hand, images that belong to different
subcategories may present similar appearance. For example,
as shown in the second row of Fig. 1, the three images belong
to three different subcategories: Brewer Blackbird, Rusty
Blackbird and Red Winged Blackbird. However, they all
have the black feather with only subtle differences. To take
a closer look, we can find these three different birds have
some unique parts with distinguishing colors on their wings.
Howeyver, these differences are so subtle and even hard for a
person without professional knowledge to figure out.

It is therefore usually desirable to localize the discrimina-
tive regions in the feature extraction. Previous work lever-
aged the manually defined part-based annotations to indicate
the distinctive regions [8]. However, it is labor intensive
to obtain manual annotations. Moreover, it is difficult even
for a human to identify the really discriminative regions.
Recently, the attention mechanism has been proposed and
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shown convincing performance for extracting discriminative
regions [9]-[11]. In FGVC, through the attention mechanism,
we can highlight the regions that is significant for categoriza-
tion. However, it is still a challenging problem to recognize
the fine-grained image due to its subtle inter-class differences
and large intra-class variations.

Moreover, in order to recognize those similar objects,
a highly non-linear holistic representation is demanded. In fact,
the importance of a high-quality discriminative feature repre-
sentation is demonstrated in many previous work [12], [13].
In recent years, ConvNets have shown great effectiveness
in extracting discriminative information from the image to
produce a set of feature maps through a series of convolution
operations. However, the holistic representation is simply
obtained by average pooling of the feature maps from the last
convolutional layer. These simple feature encoding methods
discard crucial detailed information. Considering the chal-
lenges of FGVC, the feature maps produced by plain ConvNets
are unsatisfactory for fine-grained image classification tasks.

To solve these problems, some encoding methods [12]-[17]
have been proposed and achieved great successes. Encoding
can be seen as an enhancement process that provides us
more discriminative feature representation. A simple method
called bilinear pooling [14] has produced state-of-the-art per-
formance on a variety of fine-grained classification problems.
The bilinear pooling collects second-order statistics of local
features over a whole image to form a holistic representation
for classification while higher-order statistics have also been
explored in several vision tasks [13], [18], [19]. However,
these encoding methods usually induce a high-dimensional
holistic representation, which causes a heavy computational
burden. Moreover, existing encoding methods mainly operate
on longitudinal vectors, which do not fully capture the spatial
layout information of images.

In this paper, we propose a novel deep learning architec-
ture named Attentional Kernel Encoding Networks (AKEN)
for fine-grained image categorization, which is illustrated
in Fig. 2. The AKEN aggregates feature maps from the
last convolutional layer of ConvNets into a holistic feature
representation. Specifically, we propose applying the Fourier
embedding to encode the feature maps into a holistic rep-
resentation of images. By leveraging the strong non-linear
learning ability of kernels, the Fourier embedding can capture
more discriminative features for classification, which leads to
a high-quality feature representation.

In contrary to previous encoding methods, we propose
encoding along both longitudinal and transverse directions of
the feature maps. As shown in Fig. 2, the two encoding mod-
ules are named Longitudinal Kernel Encoding and Transverse
Kernel Encoding, respectively. The longitudinal vectors can
be regarded as a batch of local feature vectors that describe
the local response in each spatial location. If we regard each
filter as a feature detector, the response in each feature map
can be seen as the distribution of a special feature paradigm.
Therefore, encoding from the longitudinal direction provides
the feature paradigm in each spatial location. In the transverse
direction, each feature map carries different aspects of features
in the whole image. Encoding in this direction can obtain the

Longitudinal
Kernel Encoding

Feature maps

Cascaded
Attention

Transverse.
Kernel Encoding

Fig. 2. This is the flow chart of our proposed Attentional Kernel Encoding
Networks (AKEN). After feature extraction on the original image, we apply
Cascaded Attention (Cas-Attention) module to highlight the discriminative
regions. Then, we encode the feature maps to obtain the global feature
representation. Differs from regular encoding methods that only concentrate on
the longitudinal direction (Shown in yellow), we also encode in the transverse
direction (Shown in orange). Finally, we concatenate two vectors produced
by two directions encoding and get the final feature representation.

feature distribution of each specific feature paradigm in the
original image, which is complementary to the information
in the longitudinal direction. Therefore, our AKEN can well
preserve these two sources of information that complements
each other in classification. Additionally, the feature encoding
via non-linear kernel encoding can be seamlessly injected
into the convolutional learning architecture without forgoing
the end-to-end training. More importantly, AKEN leverages
the strength of ConvNets for feature extraction and kernels
for non-linear learning, which can help to sufficient extract
discriminative features from the input image.

Moreover, in order to extract features from the most discrim-
inative regions, we introduce the attention mechanism before
the feature encoding. Specifically, we design the Cascaded
Attention (Cas-Attention) module to highlight the regions
that reflect the visual differences among different categories.
Additionally, we incorporate the residual learning strategy into
the attention module. More importantly, we also incorporate a
cascaded structure. It generates attention maps from different
scales of receptive field and locates the discriminative features
with various scales. This multi-scale mechanism has been
proved effective in feature extraction [20]-[22] and also plays
an important role in our AKEN.

In conjunction with the attention mechanism, the proposed
attentional kernel encoding network can not only identify
the most discriminative features but also achieves the high
non-linearity while compacting holistic representations for
fine-grained image categorization. The main contributions of
this paper can be summarized as in the following three points:

e We propose a new learning architecture, called
Attentional Kernel Encoding Networks (AKEN),
for fine-grained image categorization. It combines the
respective advantages of convolutional neural networks
and kernels for feature extraction and non-linear learning.

o We propose encoding feature maps from both longitudinal
and transverse directions, which not only capture local
discriminative features but also preserve spatial layout
information, resulting in comprehensive representations.

o« We design the Cas-Attention module to highlight sig-
nificant regions in the feature maps, which enables the
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network to encode the most discriminative features in
different scales.

To evaluate the effectiveness of the proposed AKEN for
fine-grained image classification, we conduct extensive exper-
iments on three commonly-used benchmark datasets. The
results have shown that our AKEN can achieve high perfor-
mance that is competitive and even better than state-of-the-art
methods. We also provide in-depth ablation studies to verify
each component of our AKEN.

The rest of this paper is organized as follows. Sec.II reviews
the related work. Sec.III introduces our AKEN in detail.
Sec.IV presents the experimental results on three fine-grained
datasets. At last, we conclude all of the paper in Sec.V.

II. RELATED WORK

In this part, we will introduce some existing deep learning
based methods for fine-grained image classification from three
parts. First, we will introduce annotation based methods for
FGVC in Sec.II-A. Second, we will present the attention based
methods in Sec.II-B. Finally, we will review the encoding
based methods in the recent literature in Sec.II-C.

A. Annotation Based Method

Since the differences among different sub-categories in
FGVC are subtle and often exist in some specific local
regions, a natural idea to improve the classification accuracy
is finding and locating these significant regions. To achieve
this goal, utilizing manual object part annotations directly is a
straightforward way [8], [23], [24]. They can locate and crop
the discriminative regions with the help of manmade bounding
boxes to outstand them in the process of classification. These
methods achieve impressive results and show the effectiveness
of part localization. However, to obtain these annotations is
quite costly, which requires a lot of time and workforce.
This characteristic restricts the application of these methods.
Therefore, we need a more flexible mechanism to reduce the
heavy manual labeling work.

B. Attention Based Method

As mentioned in Sec.II-A, considering the difficulties faced
in the annotation based methods, we need a more flexi-
ble mechanism to figure out and locate each discriminative
regions. In fact, in ConvNets, different convolutional filters
can be regarded as different feature detectors. Therefore,
responses of different filters often indicate different feature
regions, which usually indicate different parts in images.
Inspired by this observation, the attention mechanism has been
proposed in recent years. It can focus on a specific location
and enhance representations of objects there. Meanwhile,
attention mechanism can be easily inserted into ConvNets
without losing the end-to-end architecture. Based on these
advantages, attention mechanism has achieved great success
in a broad range of visual tasks, e.g. image classification [25],
video classification [9], [10], [26], image retrieval [27], person
re-identification [28] and image segmentation [29].

In FGVC, many methods take advantage of the attention
mechanism to highlight discriminative regions and reduce

the heavy labeling work. Xiao et al. [30] proposed a
two-level attention model to avoid the use of annotations.
In their method, one object-level attention model selects
relevant patches, and the part-level attention localizes dis-
criminative parts. Liu er al. [31] presented a fully convolu-
tional attention architecture to extract significant local regions.
Jaderberg et al. [32] proposed a dynamic mechanism to
actively transform an image according to the transverse infor-
mation, including spatial correlation, expected appearance.
Fu et al. [33] proposed a novel recurrent attention convo-
lutional neural network (RA-CNN) to recursively locate the
discriminative regions of original images. RA-CNN provides a
series of sub-images at multiple scales and zooms in the impor-
tant regions of images for classification. In [34], DFL-CNN
captures the discriminative regions for different classes in an
end-to-end manner. It regards a 1 x 1 convolutional filter
as a feature detector, based on which the class-specific dis-
criminative patches is localized. In [35], Sun et al. proposed
the multi-attention multi-class constraint (MAMC). It designs
multiple attention branches with a metric learning framework
to locate different discriminative parts, which proves the
effectiveness of taking the attention mechanism as a feature
detector. In [36], TASN generates the attention map through
self-trilinear product, and then produces a detail-preserved
image and structure-preserved image through sampling that
is guided by the attention map. In the sampling process,
the discriminative regions will be highlighted with high res-
olution. Compared to the “crop” and ‘“zoom-in” operation
in [33], the highlight process in [36] is more flexible. All these
attention methods have achieved great success in FGVC. In our
AKEN, we also utilize the attention mechanism and design
our Cas-Attention module to highlight the discriminative
regions.

C. Encoding Based Method

As discussed in Sec.I, FGVC is quite a challenging task,
which calls for a highly non-linear holistic feature repre-
sentation. A Fine-grained Dictionary Learning (FDL) for
image classification was proposed in [12]. It uses three
hybrid dictionaries to encode the image and obtain a dis-
criminative feature representation. The experimental results
on fine-grained datasets show the powerful effects of FDL,
which also demonstrates the importance of a high-quality
feature representation for FGVC. Therefore, to get better
performance, more and more concerns are given to obtain
a discriminative feature representation. In recent years, Con-
vNets have been proven a powerful feature extractor that can
provide discriminative features and achieved great success
in many vision tasks. However, they are not enough for
FGVC due to its extreme difficulties. Therefore, we urgently
need an enhancement process to boost the discrimination of
features.

Adding the encoding module after the convolutional layers
in ConvNets has been proven an effective way to achieve this
goal. The encoding module can fuse the feature maps and
finally get a highly non-linearly holistic feature representation.
Bilinear pooling is a classical encoding method. It was first
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proposed by Tanenbaum and Freeman [37] to model two-factor
variations. Lin ef al. [14] introduced Bilinear pooling into
ConvNets as a pooling layer to learn the channel’s correlation,
which uses element-wise square root normalization followed
by L, normalization to normalize the covariance matrix.
They took one step further and improved the original bilinear
pooling by the novel matrix square root normalization in [15].
Additionally, in [38], Yu et al. developed Hierarchical Bilinear
Pooling (HBP) network based on cross-layer bilinear modules
to fuse the information from intermediate layers in ConvNets.
However, bilinear pooling methods mentioned above have two
drawbacks. On the one hand, bilinear pooling needs to operate
the outer product, which is expensive in terms of compu-
tation. To solve this problem, two novel compact bilinear
representations were proposed in [39]. They are produced by
Random Maclaurin (RM) and Tensor Sketch (TS) projection
respectively to approximate the outer product, which achieve a
faster computing speed with no loss of classification accuracy.
On the other hand, bilinear pooling only gathers 2nd order
information of the input feature maps. It loses the 1st order
information, which is believed to be important in holistic
feature representation. To settle this problem, Wang et al. [16]
proposed G2DeNet with Gaussian embedding that combines
Ist order information with 2nd order information together.
However, G>DeNet maps a Gaussian to a square rooted
symmetric positive definite (SPD) matrix in a high dimension,
which leads to extremely high dimensionality of the encoded
features. Gou et al. [17] improved it by constructing a
homogenous mapping (HM) layer to decompose the tensor
product operator. Then, a compact fashion can be introduced
to reduce the dimensionality with some mathematical tricks.
Specifically, in [13], Cai et al. proposed a method to approx-
imate polynomial kernel in CNNs. It encodes feature maps
concatenated from the output of different convolutional layers
and project them to a high-dimension space. We think our
AKEN and [13] have the close inspiration that uses the
non-linear learning ability of kernel to enhance the feature
maps. The difference is that we use Fourier embedding to
approximate the shift invariant kernel.

III. OUR METHOD

In this section, we present our proposed Attentional Kernel
Encoding Network (AKEN), as illustrated in Fig. 3. The end-
to-end framework AKEN is composed of three parts:

1) A basic feature extraction module that extracts features
from original input images, introduced in Sec. III-A.

2) An attention module to help the network focus on
informative regions of features, introduced in Sec. III-B.

3) Two parallel kernel encoding modules that consider lon-
gitudinal and transverse information, respectively, explained in
Sec. III-C.

At last, we explain how we integrate these three parts
together and present the whole architecture of our AKEN in
Sec. III-D.

A. Convolutional Module

Our AKEN does not rely on any specific convolutional
architectures for feature extraction. We deploy the common

convolutional neural network as the backbone for computa-
tional efficiency. Specifically, we keep the convolutional mod-
ule of the original neural network and remove the remaining
parts. The output of this module is a feature map in N x C x
W x H dimensions, where N represents the batch size, W, H
and C indicate the width, height and the number of channels
of the feature maps respectively. Since fine-grained datasets
are in relatively small scales, we pre-train the backbone on
ImageNet in order to obtain a better parameter initialization.

B. Cascaded Attention Module

In order to highlight the regions that are discriminative for
classification, we design a Cas-Attention module to refine the
feature maps before encoding. Specifically, as shown in the
Cas-Attention module in Fig. 3, given the final feature maps
output from the ConvNets, denoted as X, we generate two 3D
attention maps M1 (X) and M, (X) through two basic branches.
Each basic branch produces the attention maps with a specific
filter size through residual strategy. By the cascade connection
of these basic branches, we obtain the multi-scale information
in the attention module. Meanwhile, the obtained 3D attention
maps are the same size as X. The 3D attention maps ensure
that each pixel has its own corresponding weight.

We first generate M;(X) by using a 1 x 1 convolutional
operation from the original feature maps. Then, we impose the
attention map as a 3D mask on the output feature map using
the element-wise multiplication. Instead of directly feeding
attenuated feature maps M{(X) ® X as the input to the next
layer, we borrow the idea of the residual learning and use
element-wise summation.

We then expand the receptive field and generate M>(X) by
using a 3 x 3 convolutional operation from the original feature
maps. With the padding process, the 3D attention maps are
also the same size as X. Then, we impose M>(X) as a 3D
mask on the last output feature map using the element-wise
multiplication. We merge it with original feature maps using
element-wise summation.

The overall process can be presented as:

X=X+X+XQM(X)) QM (X), (D

where ® denotes element-wise multiplication. Since single
attention only looks into the feature maps on one scale,
it will ignore vital information in larger scale. Considering this,
our Cas-Attention module highlights discriminative regions
through two attention maps produced by two basic branches.
Meanwhile, the residual strategy helps the gradient’s propaga-
tion in back propagation [25] and leads to the better perfor-
mance. The visualization results in Sec. IV-D show the great
effectiveness of our Cas-Attention module for highlighting
discriminative regions.

C. Kernel Encoding Module

We first provide a brief introduction of the kernel method
and discuss kernel approximation with some theories in
Sec.III-C1. Based on the given theories, we design a direc-
tional kernel encoding module, combining longitudinal kernel
encoding and transverse kernel encoding, as explained in
Sec.III-C2 and Sec.III-C3.
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Diagram of AKEN. It mainly contains three parts: feature extraction, Cas-Attention module, and directional kernel encoding module considering

both longitudinal direction and transverse direction. We also illustrate the details of some modules in this diagram. As we can see, in the Transverse Kernel
Encoding, we first reshape the feature map and exchange the dimension of transverse and longitude. Then we operate convolution and Fourier embedding on

the reshaped feature map to encode the transverse points.

1) Fourier Embedding: Kernel methods have been widely
explored in machine learning, showing high effectiveness in
learning non-linearity in data. The great power of kernels
has not been well explored in the scenarios of convolutional
neural networks. Hereby, we introduce kernels into neural
networks via Fourier transformation to encode feature maps
into a holistic representation.

A kernel is a function that takes two input vectors in the
original space and returns the dot product of the vectors.
Formally, given input data x,y € X, and a mapping function
#(-): X = RV, and a kernel function can be represented as

k(x,y) =< ¢(x), p(y) > )

For a simple circumstance, it is easy to obtain lifting
¢ (-), such as the linear transform. However, to obtain the
non-linearity information, ¢(-) is non-linear and of high,
even infinite dimensionality in most situations, which makes
it hard to find the exact representation. To deal with this
problem, the kernel method provides a shortcut, which skips
the process of ¢(x), ¢ (y) and calculates the kernel function
k(x,y) directly. Kernel machines, e.g., the support vector
machine, take advantage of the kernel method, where the inner
product between lifted data points can be computed as k(x, y).
However, the cost of this mechanism is that algorithms access
the data only through evaluations of k(x,y) between every

data pair, which brings large computation and storage costs
when the training set is large.

Recently, kernel approximation has attracted increasing
attention, and it is used to explicitly map the data to a
low-dimensional inner product space using a randomized
feature map z: R? — RL such that

k(x,y) =< (), p(y) >~ 20" z(y), 3)

where L is the dimensionality of the approximated inner
product space.

One of the most widely used approaches to kernel approxi-
mation is the one based on random Fourier features, which is
derived from Bochner’s theorem.

Theorem 1 (Bochner [40]): A continuous function g
R? — C is positive definite on R? only if it is the Fourier
transformation of a finite non-negative Borel measurement
w(w) on R4, ie.,

g(x) :/ efj“’Txd,u(w), vx € RY, 4)
RI

where j denotes the imaginary unit.
Proposition 1: For shift invariant kernel k(x —y), Random
Fourier Features of X € R? can be represented as

2(x) = %[cos(wfx +b)1" € R, Q)
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where o is sampled from Fourier transform of k(x —y) and
b; is drawn uniformly from [0,2x] [41].
The proof is given in the Appendix A. Proposition 1 ensures
that the expectation of z(x)”z(y) is equal to k(x,y). How-
ever, this proposition does not ensure the convergence of the
adopted kernel approximation and we therefore provide the
following proposition to theoretically guarantee the conver-
gence.

Proposition 2 (Convergence): For the feature mapping 7(-)
in proposition 1, z(x) " z(y) converges to k(x,y), where larger
L leads to faster convergence. Specifically,

Prijz(x)"z(y) — k(x,y)| > €] < 2exp(—Le%/8).  (6)

The proof is given in the Appendix B. Proposition 6 ensures
the convergence of the approximation. With these two proposi-
tions, we can decouple the kernel into the inner product of z(x)
and z(y), and regard z(-) as the replacement of the original
lifting ¢ (-).

However, Proposition 6 only guarantees an unbiased esti-
mate when L — oo, which means that the computational over-
head and storage cost go up greatly with the increase of dimen-
sionality. Fortunately, implementing kernel approximation in
ConvNets solves the problem. ConvNets are fully data-driven,
which dynamically adjust parameters towards the minimum
bias during the training process to reduce the gap between
kernels and their corresponding approximations. From this
perspective, integrating kernel approximation into ConvNets
can alleviate the problem of computation and storage burden,
without forgoing end-to-end training.

As discussed before, we need a holistic representation
that can distinguish different sub-ordinate categories in the
fine-grained task. Technically, we need to transform the feature
maps refined by the attention module into a single vector.
Thus we propose applying the Fourier embedding derived
from Bochner’s theorem in ConvNets to encode the feature
maps into a holistic representation of images, by leveraging
the strong non-linear learning ability of kernels.

With the motivations above, we start to design our encoding
module. In order to extract features from different perspectives
of views, we implement Fourier embedding in two direc-
tions. From a longitudinal perspective, the feature maps are a
batch of local feature vectors that describe the local response
associated with each spatial location. From the transverse
perspective, each feature map carries a certain aspect of the
whole image, if we regard each filter as a feature detector.
Therefore, to well preserve these two sources of information
that are complementary to each other in the feature maps,
we apply the kernel encoding along both longitudinal and
transverse directions.

2) Longitudinal Kernel Encoding: As shown in longitudinal
kernel encoding module in Fig. 3, X € RW>*#*C contains
the input feature maps, and each longitudinal vector extracted
from X is denoted as X; € RC, where 1 <i < W x H.
According to Proposition 1, we now construct z(x;) by the
Fourier embedding, resulting in

2(x;) = cos(W'x; +b), (7

where W e RCE*L1 contains weight parameters that are
trainable. We initially sample W from a Gaussian distribution,
which is the Fourier transform of a Gaussian kernel, as a
typical shift invariant kernel. The bias parameter is initialized
by drawing uniformly from [0,2z]. This turns out to be
a non-linear layer with cosine activations, which can be
seamlessly injected into the neural network without forgoing
end-to-end training. After embedding all longitudinal vectors
into a more compact lower-dimensional space, we aggregate
them into a Li-dimension single feature vector v;, by average
pooling.

3) Transverse Kernel Encoding: The longitudinal vector
contains local semantic features without spatial information.
So we design the transverse kernel encoding module for
aggregating the whole map in each channel. As shown in the
transverse kernel encoding module in Fig. 3, we first reshape
each feature map X j € RY*H in X to a vector y j of the
length W x H, where 1 < j < C. Then, similarly to the
longitudinal encoding, we apply Proposition 1 and embed y;
into a lower-dimensional space, resulting in

2(y;) = cos(W'y; +b), (8)

where W € RW#>*L2 contains the parameters to be learned
during the training stage. After embedding, we additionally
employ a convolution layer to shrink the feature maps. Then
we apply the average pooling to aggregate them into a L;-
dimension single feature vector v7.

D. Integration

With the three modules introduced above, we obtain the
entire framework, shown in Fig. 3. The convolutional module
first extracts features from the input image and generates basic
feature maps. Then, the Cas-Attention module highlights the
discriminative regions of the previous feature maps. After this,
the feature maps go through both longitudinal and transverse
kernel encoding modules separately. The longitudinal kernel
encoding module outputs a vector in the length of L, while
the transverse kernel encoding module outputs a vector in the
length of L. Then we concatenate these two vectors together
into a vector in the dimension of L + L;. Finally, we employ
a fully connected layer with a softmax operation to get the
probability distribution for classification.

IV. EXPERIMENTS

To evaluate the effectiveness of the proposed AKEN,
we conduct experiments on three benchmark datasets,
including CUB-200-2011 (Birds) [42], FGVC-Aircraft (Air-
craft) [43], Stanford Cars (Cars) [44]. The experimental results
have shown that AKEN achieves compromising performance
on the widely used fine-grained recognition datasets. We have
also conducted extensive ablation studies to show the effec-
tiveness of the proposed attention module and direction kernel
encoding module.

A. Datasets

We provide a brief description of the datasets used in our
experiments associated with split settings and the statistics are
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TABLE I
THE SPLIT OF THE DATASETS WE EMPLOY TO EVALUATE OUR NETWORK

Datasets Class Train Test
CUB-200-2011 [42] 200 5994 5794
FGVC-Aircraft [43] 100 6667 3333

Stanford Cars [44] 196 8144 8041

Fig. 4. Here are a few samples of the datasets we use. The images from top
to bottom are from CUB-200-2011, FGVC-Aircraft and Stanford Cars.

listed in Table I. We also show some samples of each dataset
in Fig. 4.

1) CUB-200-2011  [42]: CUB-200-2011  consists
of 11788 bird images from 200 bird categories. It is
one of the most challenging fine-grained datasets due to
the great similarities among different categories and huge
variations in pose and viewpoints in each category. We use
5994 images for training and 5794 for testing, just like the
split in [42].

FGVC-Aircraft

2) FGVC-Aircraft [43]: dataset contains 10000 images
from 100 different aircraft models, giving 100 images for each
model. Different models differ in appearance and structure.
We adopt the training/testing split like [43] with 6667 for
training and 3333 for testing.

3) Stanford  Cars  [44]:  Stanford Cars contains
16185 images with 196 different car classes. We adopt
the same split provided by [44] to perform our experiments,

TABLE II

ACCURACY COMPARISON WITH DIFFERENT BACKBONES
ON THREE CHALLENGING FINE-GRAINED DATASETS

Backbone Birds Aircraft Cars
ResNet-50 [45] 86.2 93.3 92.6
ResNet-101 [45] 86.8 93.7 93.0

VGG-16 [46] 86.5 93.5 92.8
VGG-19[46] 87.1 94.0 93.9
TABLE III

ACCURACY COMPARISON WITH CLASSICAL METHODS
ON CUB-200-2011 DATASET

Method Anno. Backbone Accuracy
VGG-16 [46] VGG-16 75.4
VGG-19 [46] VGG-19 77.8

ResNet-50 [45] ResNet-50 81.7
ResNet-101 [45] ResNet-101 84.5
PA-CNN [47] v/ VGG 82.8
FCAN [31] V4 ResNet-50 84.7
SPDA-CNN [48] Vv VGG 85.1
B-CNN [14] 4 VGG-D.M 85.1
PN-CNN [49] Vv AlexNet 85.4
STN [32] Inception 84.1
RA-CNN [33] VGG-19 85.3
MA-CNN [50] VGG-19 86.5
MAMC [35] ResNet-101 86.5
DFL-CNN [34] ResNet-50 87.4
B-CNN [14] VGG-D.M 84.1
iB-CNN [15] VGG-D 85.8
CB-CNN [39] VGG-D 84.0
HIHCA [13] VGG-16 85.3
MoNet [17] VGG-16 86.4
DeepKSPD [51] VGG-16 86.5
G?DeNet [16] VGG-16 87.1
PC [52] DenseNet-161 86.8
HBP [38] VGG-16 87.1
AKEN (ours) VGG-19 87.1

which use 8144 images for training and 8041 images for
testing.

B. Implementation Details

Our module can be inserted into many existing convolu-
tional neural networks, such as AlexNet, VGGNet and ResNet.
We compare different networks in Table II. According to the
results, we finally choose VGG19 as the backbone of our
AKEN. The VGG19 network is pretrained on the ImageNet
classification dataset. We remove the last three fully-connected
layers and insert our components in the framework. For the
kernel encoding module, we set L, Ly to be equal to 512,
and we initialize the parameters by sampling from a Gaussian
distribution. Note the initialization is corresponding to Propo-
sition 1 in Sec. III-C1 and the Gaussian function is the Fourier
transform of a Gaussian kernel. Parameters in each layer are
all trainable. We train all the networks using a stochastic
gradient descent with a batch size of 32, and the momentum
of 0.9. The learning rate is initialized with 0.01 and is then
annealed by 0.1 every 20 epochs. Meanwhile, we limit the
minimum of learning rate not less than 0.0001. In other words,
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TABLE IV

ACCURACY COMPARISON WITH CLASSICAL METHODS
ON FGVC-AIRCRAFT DATASET

TABLE V

ACCURACY COMPARISON WITH CLASSICAL METHODS
ON STANFORD CARS DATASET

Method Anno. Backbone Accuracy Method Anno. Backbone Accuracy
VGG-16 [46] VGG-16 824 VGG-16 [46] VGG-16 82.2
VGG-19 [46] VGG-19 84.8 VGG-19 [46] VGG-19 84.9

ResNet-50 [45] ResNet-50 88.5 ResNet-50 [45] ResNet-50 89.8
ResNet-101 [45] ResNet-101 90.3 ResNet-101 [45] ResNet-101 91.9
MG-CNN [53] Vv VGG-19 86.6 FCAN [31] V4 ResNet-50 93.1

BoT [54] Vv VGG-16 88.4 BoT [54] V4 VGG-16 92.5
RA-CNN [33] VGG-19 88.2 PA-CNN [47] 4 VGG 92.8
MA-CNN [50] VGG-19 89.9 RA-CNN [33] VGG-19 92.5

DFL-CNN [34] VGG-16 92.0 MA-CNN [50] VGG-19 92.8
B-CNN [14] VGG-D 84.1 MAMC [35] ResNet-101 93.0
iB-CNN [15] VGG-D 88.5 DFL-CNN [34] VGG-16 93.8
HIHCA [13] VGG-16 88.3 B-CNN [14] VGG-D.M 91.3
MoNet [17] VGG-16 89.3 iB-CNN [15] VGG-D 92.0

DeepKSPD [51] VGG-16 91.5 HIHCA [13] VGG-16 91.7

G®DeNet [16] VGG-16 89.0 MoNet [17] VGG-16 91.8

PC [52] DenseNet-161 89.2 DeepKSPD [51] VGG-16 93.2

HBP [38] VGG 90.3 G2DeNet [16] VGG-D 92.5
AKEN (ours) VGG-19 94.0 PC [52] ResNet-50 93.4
HBP [38] VGG-16 93.7

AKEN (ours) VGG-19 93.9

we only lower the learning rate twice. In order to mitigate
overfitting, we carry out data augmentations, including random
flip and rotation. Furthermore, instead of regularizing the
image size directly, we add pixel points to the shorter edge
with average value of this image before we resize it to
448 x 448. We perform all experiments using PyTorch on a
server with NVIDIA Titan X GPUs.

C. Performance and Comparison

We compare our approach with various existing FGVC
methods. The results on CUB-200-2011, FGVC-Aircraft and
Stanford Cars are shown in Table III, Table IV and Table V
respectively. Each table is split into five parts over the rows.
The first part displays the fine-tuned baselines; the second
part includes the annotation-based methods; the third part
includes the unsupervised part-based methods; the forth part
includes the encoding methods, and the last part is our AKEN.
Additionally, in these three tables, “Anno.” represents using
bounding box or part annotation.

1) Results on CUB-200-2011 Dataset: The classification
accuracy on CUB-200-2011 is displayed in Table III. We can
see that our AKEN outperforms most classical methods with
a recognition rate of 87.1%, only 0.3% lower than the state-
of-the-art result. It is worth mentioning that our AKEN
exceeds all of the existing encoding methods, which demon-
strates the great effectiveness of the proposed kernel encoding
method.

2) Results on FGVC-Aircraft: The classification accuracy
on FGVC-Aircraft is shown in Table IV. We achieve the best
performance and beat the second best method by a 2.17%
improvement. Specifically, this performance largely surpasses
all the encoding methods.

3) Results on Stanford Cars: The classification accuracy on
Stanford Cars is displayed in Table V. Our method exceeds
all of the comparison methods with an accuracy of 93.9%.

These results indicate that our proposed approach is pow-
erful and demonstrate that the kernel encoding module in
both longitudinal and transverse directions can improve the
non-linear learning ability. Also, the impressive performance
indicates the attention module can highlight significant regions
and improve the performance to a large extent. We will show
the power of the attention mechanism in Sec. IV-D and analyze
the effectiveness of each module in detail in Sec. IV-E.

D. Visualization

To show the effectiveness of the Cas-Attention module,
we visualize the attention maps M,. Specifically, we compute
the average value of M, across the channels to visualize
the attention heat map, which is similar to the visualization
method in [38]. The visualization results of some examples are
illustrated in Fig. 5. From the visualization results, we can see
that the attention map can highlight the discriminative regions
from the complex background. Take the image in the second
row and the fifth column for example, its attention map can
clearly locate the bird inside the cluttered branches. Although
the objects appear in multiple poses and views, even with
complex backgrounds, the attention map can still well cover
the main part of the target, which may further help to boost
the performance of fine-grained classification. Meanwhile,
we compare the attention map generated by different methods
in Fig. 6, from which the effectiveness of our Cas-Attention is
shown more clearly. We will give further analysis about Fig. 6
in Sec.IV-El.

Additionally, we also visualize the feature maps before
and after the attention module in Fig. 7. We show the input
images in the first column, the feature maps before and
after the attention module in the second and fourth column,
the attention maps in the third column. We can see that the
feature maps pay more attention to the target and the response
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(®) Acura of Tumnersville

Fig. 5.

The visualization of attention maps on three datasets, CUB-200-2011, FGVC-Aircraft and Stanford Cars respectively. For each dataset, we show

original images in the odd rows and the corresponding heat maps on the right side. The visual results affirm that our attention module can effectively highlight

the discriminative regions.

TABLE VI
ACCURACY COMPARISON WITH DIFFERENT ATTENTION MAPS

Attention Maps Accuracy
M,y 86.0%
M1 +M2 87.1%
M1+M2+M3 868%
M1+M2+M3+M4 86.4%

of background that may be less significant in classification
is much lower. These results prove the effectiveness of our
Cas-Attention module in highlighting discriminative regions.

E. Ablation Study

In this section, we show the effectiveness of our
Cas-Attention module and kernel encoding module by exten-
sive ablation study. We first evaluate the effectiveness of our
Cas-Attention module in Sec.IV-E1. Then, we operate exper-
iments to demonstrate the capability of Fourier embedding in
Sec.IV-E2. Afterwards, we evaluate the effectiveness of LKE
and TKE in Sec.IV-E3 and Sec.IV-E4 respectively. At last,
in Sec.IV-ES5, we try to combine the output of LKE and TKE
in different ways, and compare their performance. Specifically,
if not specified, we use the CUB-200-2011 dataset and adopt
VGG19 [46] as the backbone in the following experiments.

1) Effectiveness of Cascaded Attention: To evaluate the
effectiveness of the Cas-Attention module, we first operate
experiments to discuss the compact of the number of attention
maps in our Cas-Attention module. Based on the M| and M;
shown in Fig. 3, we add two branches to obtain M3 and My
with 5 x 5 and 7 x 7 convolution respectively. Meanwhile,
we also test the performance when removing the M> and only
keep the Mj. In this situation, our Cas-Attention degener-
ate to Res-Attention structure. The experimental results are
illustrated in Table VI. From the results, we can see that the
best performance is achieved with M; and M>. When more
attention maps are used, the accuracy is decreased. We think
it is caused by two factors. First, more attention maps means
more parameters, which may lead to the overfitting. Second,
it will lose some important detailed information if the filter
size is too large.

TABLE VII
ACCURACY COMPARISON WITH FOUR DIFFERENT ATTENTION DESIGNS

Method Accuracy
. 1x1 86.0%
Conv-Attention 1x143x3 86.2%
. 1x1 86.1%
Res-Attention 1x143x3 86.3%
1x1 86.5%
Non-Local Ix14+3x3 86.8%
Cas-Attention 1x1+3x3 87.1%
Baseline(without attention) 85.7%

Then, we compare our Cas-Attention with different meth-
ods. On the one hand, we compare the quality of attention map
generated by our Cas-Attention with two baselines, convolu-
tional attention (Conv-Attention) and residual attention (Res-
Attention). They are all attention-map based methods, in which
attention map is utilized to highlight the discriminative regions
and plays an important role. Specifically, Conv-Attention is a
3D attention that measures the discrimination of each point
in the feature map. Res-Attention adds residual mechanism
based on Conv-Attention, and our Cas-Attention adds an
extra branch with attention maps on different scales based
on the Res-Attention. The visualization results are shown
in Fig. 6. It is clear that our Cas-Attention can highlight
the discriminative region. Especially for images with the
challenging background, the performance of our Cas-Attention
is obviously better than the baseline. For example, as shown
in the first column, the bird is occluded and surrounded by
the branches. Moreover, the color of the bird is not salient
in the environment either. In this challenging situation, only
our Cas-Attention localizes the bird precisely and highlight
the discriminative region. This demonstrates the effectiveness
of our proposed Cas-Attention.

On the other hand, we compare the classification accuracy
of different methods. Here, we take the non-local method [55]
into account. The non-local operation calculates the relation-
ship between each pair of spatial points through the similarity
matrix, which captures the long-range dependencies across
the whole image. It can be inserted into the ConvNets as a
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Conv-
Attention

Res-
Attention

Cas-
Attention

Fig. 6. The visualization of attention map from different methods. The first row shows the input image. The second to fourth row depicts the attention map
from Conv-Attention, Res-Attention and Cas-Attention respectively. We can find that our proposed Cas-Attention can precisely localize the discriminative

regions, especially in the challenging situation (e.g. images in the first column).

Before

Original Attention maps After

Fig. 7. The visualization of feature maps before and after the Cas-Attention
module. The first to fourth columns are the input images, the feature maps
before the attention module, the attention heat maps, the feature maps after
the attention module respectively. It is apparent that the feature maps become
more focused on the target and the response of background, which may be
insignificant in classification is much lower.

non-local block with residual strategy. Notably, to make a full
comparison with our Cas-Attention, as shown in Table VII,
we directly operate two Conv-Attention (or Res-Attention)
with different filter sizes (1 x 1 and 3 x 3 convolutions
respectively) in sequence. Meanwhile, for non-local block,
we also add an extra block with 3 x 3 convolutions in
non-local operation. From the experimental results illustrated
in Table VII, we observe that all the attention methods can
improve the accuracy, compared with the baseline (without
attention), while Cas-Attention shows the best performance.
It is worth mentioning that, compared with the other three
methods, our Cas-Attention still has a better performance when
both operate two successive block with 1 x 1 and 3 x 3

TABLE VIII
THE EFFECTIVENESS OF FOURIER EMBEDDING

Activation Accuracy
ReLu 86.3%
Sigmoid 86.6%
Cosine 87.1%

convolutions respectively. This demonstrates that the per-
formance of Cas-Attention is not relying on the parame-
ters. We think it benefits from its cascaded multi-branch
architecture.

2) Effectiveness of Fourier Embedding: Given the refined
features after the Cas-Attention module, we explore an effec-
tive method to get a highly non-linear holistic feature repre-
sentation through kernel encoding. Here, we use the kernel
approximation based on random Fourier features. To evaluate
the effectiveness of Fourier Embedding, we use ReLu and Sig-
moid activation to replace the cosine activation in Equation 7
and Equation 8. The results are shown in Table VIIIL. It is
apparently that AKEN has higher accuracy when activated by
cosine. Specifically, the structure of the network is exactly
the same in these three situations. Therefore, we believe the
performance of kernel encoding does not rely on the number
of parameters, but benefits from the non-linearity of Fourier
Embedding.

3) Effectiveness of Longitudinal Kernel Encoding: Based on
the Fourier embedding, we apply kernel encoding along both
longitudinal and transverse directions of feature maps. Here,
we first discuss the effectiveness of LKE, and the experimental
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TABLE IX

ACCURACY COMPARISON ABOUT LONGITUDINAL KERNEL
ENCODING (LKE) AND TRANSVERSE
KERNEL ENCODING (TKE)

Method Accuracy
VGG19 + Attention 83.2%
VGG19 + LKE 84.5%
VGG19 + TKE 84.2%
VGGI19 + LKE + TKE 85.7%
VGG19 + Attention + LKE 85.9%
VGGI19 + Attention + TKE 86.1%
VGG19 + Attention + LKE + TKE 87.1%

TABLE X

ACCURACY COMPARISON OF DIFFERENT COMBINATION
WAYS OF LKE AND TKE

Activation Accuracy
Element-wise Weighted Multiplication 86.8%
Element-wise Weighted Sum 87.0%
Concatenation 87.1%

results are presented in Table IX. We can find that, compared
with the baseline, LKE can improve the accuracy a lot. This
result is consistent with our inspiration. Since the longitudinal
vector indicates different feature responses in a local area,
LKE provides us with the relationship of different feature
patterns in a non-linear space through kernel encoding, which
brings more discriminative information.

4) Effectiveness of Transverse Kernel Encoding: Since the
LKE takes each longitudinal vector as input, it only computes
the inter-channel relationship. Therefore, we propose TKE
to take the spatial layout of the image into consideration.
From Table IX, we can find that TKE can also improve
the performance. Moreover, combining both LKE and TKE
achieves a better result than each individual one, which shows
the great complementarity of LKE and TKE. Specifically, it is
worth mentioning that, compared to the first line in Table IX
(without kernel encoding), the three results in Table VIII
all have improvements. We owe this performance to the
effectiveness of our two-directional structure. In our AKEN,
LKE and TKE can capture the inter-channel and intra-channel
relationship respectively. LKE provides the relationship of
different feature pattern in each spatial point and TKE provides
the spatial distribution of each feature pattern. Therefore, when
equipped with our two directional kernel encoding, three acti-
vations in Table VIII can all improve the accuracy. However,
due to the effectiveness of Fourier embedding, the cosine
activation achieves the best performance among all activation
functions.

Additionally, we also test the Cas-Attention module with
different kernel encoding. The results show that combining
Cas-Attention with LKE and TKE produces the highest accu-
racy that is better than without the attention module. The
experimental results indicate that our Cas-Attention mod-
ule plays an essential role in assisting non-linear feature
extraction.

Input
1 1x1xC
FC
1 1><1><£
16
ReLu
1 1><1><i
16
FC
| 1x1xC
Sigmoid
! 1x1%xC
Output

Fig. 8. The illustration of the Weights Generation Module (WGM). “Fc”
means fully connected layer. ReLu and Sigmoid are two activations. The size
of vector before and after each step is denoted accordingly.

5) Combination of LKE and TKE: Here, we attempt to
combine the output of LKE (v;) and TKE (vr) in different
ways and make a comparison. Specifically, except concatena-
tion, we also try element-wise weighted sum and element-wise
weighted multiplication.

In element-wise weighted sum, given two vectors vy, and
or, we firstly utilize a Weights Generation Module (WGM)
to generate corresponding weights. The detail of WGM is
illustrated in Fig. 8. It takes vy, (vr) as input and outputs wy,
(w7). Then, the combination through element-wise weighted
sum can be written as:

Vgl = WL X 0L + W X OT 9)

where “x” denotes the element-wise multiplication and “+”
denotes the element-wise sum.

In element-wise weighted multiplication, similar to the
element-wise weighted sum, we firstly utilize WGM to gener-
ate v’y and w’r for vy and vy respectively. Then, the com-
bination can be written as:

(10)

The experimental results are listed in Table X. We can
find the best performance is produced when we concatenate
v and oyp. On the other hand, in fact, the classification
performances of three combination ways are not significantly
different, which shows our AKEN has great robustness and is
not sensitive to different combination ways.

With these experiments above, we evaluate the effectiveness
of each part in our AKEN. The results demonstrate the Cas-
Attention, LKE and TKE all play important roles in obtaining
a high-quality discriminative feature representation, which is
consistent with our motivation.

v'an = (w'rL xvr) x (0'r xvr)

V. CONCLUSION

In this work, we have presented the attentional kernel
encoding network (AKEN), which offers a new deep feature
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encoding architecture to generate highly discriminative fea-
ture representations for fine-grained visual categorization.
We introduce the kernel approximation to the deep con-
volutional networks for non-linear feature encoding, which
is implemented in both longitudinal and transverse direc-
tions. To enhance the feature encoding module, we fur-
ther design a Cas-Attention module with the residual
mechanism to highlight local regions that can distinguish
different categories. Our AKEN leverages the strengths
of both ConvNets for feature extraction and kernels for
non-linear learning. Experimental results on three bench-
mark datasets demonstrate that our proposed AKEN delivers
highly competitive performance, surpassing most previous
methods.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: From the Bochner’s theorem, we have that a
continuous kernel k(x, y) = k(x—y) on R¥ is positive definite
if and only if k(J) is the Fourier transform of a non-negative
measure.

Now if a shift invariant kernel k(J) is properly scaled,
Bochner’s theorem guarantees that its Fourier transform p(w)
is a probability distribution, as the integral of p(w) is scaled
to 1. The kernel can be written as:

k(x,y) = k(x—y) = / p@)e® S Ve
Rd

= /Rd p(w)cos(w'x — w'y)dw (11)

Therefore, we have E, cos(w' (x —y)) = k(x,y), where
o ~ p(w). And we have:
cos(w' x + b) cos(w 'y + b)
1 1
= Ecos(a}T(x—y))—i— Ecos(wT(x+y)+2b) (12)
Since Ej cos(w ! (x + y) + 2b) = 0, with b ~ Unif,27],
we could finally have:

k(x,y) = EoEp[v2 cos(wx + b) - ﬁcos(w—ry +b)]
L2
2 V2
~ [—= cos ol X+ b;) - ~—=cos(w;' y + b; ]
; «/Z ( i i) «/Z ( iy i)
=z20)"z(y)
Thus, according to Equation 13, if we draw L sam-

ples w1, s, ..., from p(w), and by, bs,...,br from
Unifio,27], then the random Fourier features can be repre-

sented as z(x) = %[cos(a);rx +b)1F e RE. O

13)

APPENDIX B
PROOF OF PROPOSITION 2

Proof: According to Proposition 1,

L
2(x) T z(y) = % Z[«/E cos(wiTx +b;) - «/Ecos(wiTy + bi)]
i=1
(14)

Here ﬁcos(w;rx + b;) - ﬁcos(w;ry + b;), where i €
{1,2,..., L}, can be seen as L independent random variables
bounded by the interval [—2,2]. And z(x) " z(y) is the empir-
ical mean of these variables.

Then by the aid of Hoeffding’s Inequality [56], we can
educe

Prijz(x)7z(y) — k(x,y)| > €] < 2exp(~Le*/8)  (15)

This indicates that more samples taken from the
Fourier features promise better performance in kernel
approximation. O]

REFERENCES

[1] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation
networks,” IEEE Trans. Pattern Anal. Mach. Intell., to be published.

[2] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Dec. 2015, pp. 1440-1448.

[3] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2015, pp. 91-99.

[4] X. Jiang et al., “Crowd counting and density estimation by trellis
encoder-decoder networks,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 6133-6142.

[5] J. Zheng, X. Cao, B. Zhang, X. Zhen, and X. Su, “Deep ensemble
machine for video classification,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 2, pp. 553-565, Feb. 2019.

[6] P.Li, A. Zhang, L. Yue, X. Zhen, and X. Cao, “Multi-scale aggregation
network for direct face alignment,” in Proc. IEEE Winter Conf. Appl.
Comput. Vis. (WACV), Jan. 2019, pp. 2156-2165.

[71 Y. Zhao, Z. Jin, G.-J. Qi, H. Lu, and X.-S. Hua, “An adversarial approach
to hard triplet generation,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp- 501-517.

[8] N. Zhang, J. Donahue, R. Girshick, and T. Darrell, “Part-based R-CNNs
for fine-grained category detection,” in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2014, pp. 834-849.

[9]1 S. Sharma, R. Kiros, and R. Salakhutdinov, “Action recognition

using visual attention,” 2015, arXiv:1511.04119. [Online]. Available:

http://arxiv.org/abs/1511.04119

R. Girdhar and D. Ramanan,

recognition,” in Proc. Adv.

pp. 34-45.

Y. Tang, X. Wang, E. Dellandrea, and L. Chen, “Weakly supervised

learning of deformable part-based models for object detection via

region proposals,” IEEE Trans. Multimedia, vol. 19, no. 2, pp. 393-407,

Feb. 2017.

X. Shu, J. Tang, G.-J. Qi, Z. Li, Y.-G. Jiang, and S. Yan, “Image clas-

sification with tailored fine-grained dictionaries,” IEEE Trans. Circuits

Syst. for Video Technol., vol. 28, no. 2, pp. 454-467, Feb. 2018.

S. Cai, W. Zuo, and L. Zhang, “Higher-order integration of hierarchical

convolutional activations for fine-grained visual categorization,” in Proc.

IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 511-520.

T.-Y. Lin, A. RoyChowdhury, and S. Maji, “Bilinear CNN models for

fine-grained visual recognition,” in Proc. IEEE Int. Conf. Comput. Vis.

(ICCV), Dec. 2015, pp. 1449-1457.

T.-Y. Lin and S. Maji, “Improved bilinear pooling with CNNs,” 2017,

arXiv:1707.06772. [Online]. Available: http://arxiv.org/abs/1707.06772

Q. Wang, P. Li, and L. Zhang, “G2DeNet: Global Gaussian distribu-

tion embedding network and its application to visual recognition,” in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,

pp. 2730-2739.

M. Gou, F. Xiong, O. Camps, and M. Sznaier, “MoNet: Moments

embedding network,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern

Recognit., Jun. 2018, pp. 3175-3183.

B. Zhang, Y. Gao, S. Zhao, and J. Liu, “Local derivative pattern versus

local binary pattern: Face recognition with high-order local pattern

descriptor,” IEEE Trans. Image Process., vol. 19, no. 2, pp. 533-544,

Feb. 2010.

Y. Cui, F. Zhou, J. Wang, X. Liu, Y. Lin, and S. Belongie, “Kernel

pooling for convolutional neural networks,” in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2921-2930.

[10] “Attentional pooling for action

Neural Inf. Process. Syst., 2017,

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Authorized licensed use limited to: University of Technology Sydney. Downloaded on May 21,2021 at 01:11:27 UTC from IEEE Xplore. Restrictions apply.



HU et al.: ATTENTIONAL KERNEL ENCODING NETWORKS FOR FINE-GRAINED VISUAL CATEGORIZATION

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

G.-J. Qi, “Hierarchically gated deep networks for semantic segmen-
tation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 2267-2275.

C. Szegedy et al., “Going deeper with convolutions,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1-9.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 4, pp. 834-848, Apr. 2018.

S. Huang, Z. Xu, D. Tao, and Y. Zhang, “Part-stacked CNN for fine-
grained visual categorization,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 1173-1182.

D. Lin, X. Shen, C. Lu, and J. Jia, “Deep LAC: Deep localization, align-
ment and classification for fine-grained recognition,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1666-1674.

F. Wang et al., “Residual attention network for image classification,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 3156-3164.

J. Yang et al., “Neural aggregation network for video face recognition,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 4362-4371.

L. Jin, X. Shu, K. Li, Z. Li, G.-J. Qi, and J. Tang, “Deep ordinal
hashing with spatial attention,” IEEE Trans. Image Process., vol. 28,
no. 5, pp. 2173-2186, May 2019.

C. Shen et al., “Sharp attention network via adaptive sampling for person
re-identification,” IEEE Trans. Circuits Syst. for Video Technol., vol. 29,
no. 10, pp. 3016-3027, Oct. 2019.

L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention to
scale: Scale-aware semantic image segmentation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 3640-3649.

T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, and Z. Zhang, “The applica-
tion of two-level attention models in deep convolutional neural network
for fine-grained image classification,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2015, pp. 842-850.

X. Liu, T. Xia, J. Wang, Y. Yang, F. Zhou, and Y. Lin, “Fully
convolutional attention networks for fine-grained recognition,” 2016,
arXiv:1603.06765. [Online]. Available: http://arxiv.org/abs/1603.06765
M. Jaderberg et al., “Spatial transformer networks,” in Proc. Adv. Neural
Inf. Process. Syst., 2015, pp. 2017-2025.

J. Fu, H. Zheng, and T. Mei, “Look closer to see better: Recurrent atten-
tion convolutional neural network for fine-grained image recognition,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 4438-4446.

Y. Wang, V. I. Morariu, and L. S. Davis, “Learning a discriminative filter
bank within a CNN for fine-grained recognition,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 4148-4157.

M. Sun, Y. Yuan, F. Zhou, and E. Ding, “Multi-attention multi-class
constraint for fine-grained image recognition,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 805-821.

H. Zheng, J. Fu, Z.-J. Zha, and J. Luo, “Looking for the devil in the
details: Learning trilinear attention sampling network for fine-grained
image recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 5012-5021.

J. B. Tenenbaum and W. T. Freeman, “Separating style and content
with bilinear models,” Neural Comput., vol. 12, no. 6, pp. 1247-1283,
Jun. 2000.

C. Yu, X. Zhao, Q. Zheng, P. Zhang, and X. You, “Hierarchical bilinear
pooling for fine-grained visual recognition,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2018, pp. 595-610.

Y. Gao, O. Beijbom, N. Zhang, and T. Darrell, “Compact bilinear
pooling,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 317-326.

W. Rudin, Fourier Analysis on Groups. New York, NY, USA: Inter-
science, 1962.

A. Rahimi and B. Recht, “Random features for large-scale ker-
nel machines,” in Proc. Adv. Neural Inf. Process. Syst., 2008,
pp. 1177-1184.

P. Welinder, S. Branson, C. Wah, F. Schroff, S. Belongie, and P. Perona,
Caltech-UCSD Birds 200. Pasadena, CA, USA: California Institute of
Technology, 2010.

S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi, “Fine-
grained visual classification of aircraft,” in Proc. HAL-INRIA, 2013,
pp. 1-6.

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

313

J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3D object representations
for fine-grained categorization,” in Proc. IEEE Int. Conf. Comput. Vis.
Workshops, Dec. 2013, pp. 554-561.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jun. 2016, pp. 770-778.

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

J. Krause, H. Jin, J. Yang, and L. Fei-Fei, “Fine-grained recognition
without part annotations,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 5546-5555.

H. Zhang et al., “SPDA-CNN: Unifying semantic part detection and
abstraction for fine-grained recognition,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 1143-1152.

S. Branson, G. Van Horn, S. Belongie, and P. Perona, “Bird species
categorization using pose normalized deep convolutional nets,” 2014,
arXiv:1406.2952. [Online]. Available: http://arxiv.org/abs/1406.2952

H. Zheng, J. Fu, T. Mei, and J. Luo, “Learning multi-attention convolu-
tional neural network for fine-grained image recognition,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 5209-5217.

M. Engin, L. Wang, L. Zhou, and X. Liu, “DeepKSPD: Learning kernel-
matrix-based SPD representation for fine-grained image recognition,” in
Proc. Eur. Conf. Comput. Vis., 2018, pp. 612-627.

A. Dubey, O. Gupta, P. Guo, R. Raskar, R. Farrell, and N. Naik,
“Pairwise confusion for fine-grained visual classification,” in Proc. Eur.
Conf. Comput. Vis., 2018, pp. 70-86.

D. Wang, Z. Shen, J. Shao, W. Zhang, X. Xue, and Z. Zhang, “Multiple
granularity descriptors for fine-grained categorization,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 2399-2406.

Y. Wang, J. Choi, V. I. Morariu, and L. S. Davis, “Mining dis-
criminative triplets of patches for fine-grained classification,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 1163-1172.

X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural

networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 7794-7803.

W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Publications Amer. Stat. Assoc., vol. 58, no. 301, pp. 13-30,
1963.

Yutao Hu received the B.S. degree in electronics
and information engineering from Beihang Univer-
sity, Beijing, China, in 2017, where he is currently
pursuing the Ph.D. degree with the National Key
Laboratory of CNS/ATM, School of Electronics
and Information Engineering. His research interests
include machine learning and computer vision.

Yandan Yang received the B.S. degree from
the Shenyuan Honors College, Beihang University,
Beijing, China, in 2018, where she is currently

e B oy pursuing the M.S. degree with the National Key
Laboratory of CNS/ATM, School of Electronics
-y and Information Engineering. Her research interests

include machine learning and computer vision.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on May 21,2021 at 01:11:27 UTC from IEEE Xplore. Restrictions apply.



314 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 1, JANUARY 2021

Jun Zhang received the B.S., M.S., and Ph.D.
degrees in communications and electronic systems
from Beihang University, Beijing, China, in 1987,
1991, and 2001, respectively. He was a Professor
with Beihang University and also the Dean of the
School of Electronic and Information Engineering,
the Vice President, and the Secretary of the Party
Committee, Beihang University. He is currently a
Professor and the President of the Beijing Institute of
Technology. His research interests are networked and
collaborative air traffic management systems, cover-
ing signal processing, integrated and heterogeneous networks, and computer
vision. He is a member of the Chinese Academy of Engineering. He was a
recipient of the awards for Science and Technology in China many times.

Xianbin Cao (Senior Member, IEEE) received the
Ph.D. degree in information science from the Uni-
versity of Science and Technology of China, Beijing,
China, in 1996. He is currently the Dean and a Pro-
fessor of the School of Electronic and Information
Engineering, Beihang University, Beijing. His cur-
rent research interests include intelligent transporta-
tion systems, airspace transportation management,
and intelligent computation.

Xiantong Zhen received the B.S. and M.E.
degrees from Lanzhou University, Lanzhou, China,
in 2007 and 2010, respectively, and the Ph.D. degree
from the Department of Electronic and Electri-
cal Engineering, The University of Sheffield, U.K.,
in 2013. He worked as a Post-Doctoral Fellow at
the University of Western Ontario, London, ON,
Canada, and the University of Texas at Arlington,
Arlington, TX, USA, from 2013 to 2017. He was
an Associate Professor at the School of Electronic
and Information Engineering, Beihang University,
Beijing, China, from 2017 to 2018. He is currently a Senior Scientist with
the Inception Institute of Artificial Intelligence, UAE. His research interests
include machine learning and computer vision.

» a

Ny

Authorized licensed use limited to: University of Technology Sydney. Downloaded on May 21,2021 at 01:11:27 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


